Derivative of logarithmic functions
![]() Everything You Need in One PlaceHomework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered. | ![]() Learn and Practice With EaseOur proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals. | ![]() Instant and Unlimited HelpOur personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now! |
Make math click 🤔 and get better grades! 💯Join for Free
Intros
Examples
Lessons
Free to Join!
Easily See Your Progress
We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.Make Use of Our Learning Aids
Earn Achievements as You Learn
Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.Create and Customize Your Avatar
Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.
Topic Notes
Derivative of ln x
So far in Calc, we have learned how to find trig derivatives such as the derivative of cosx, and the derivative of tanx. We have also done harder trig derivatives like the derivative of sin2x. Next, we went one step farther and looked at derivatives of inverse trig functions like arctan and arcsin. Not only that, but we've also looked at differentiating exponential functions like the derivative of ex and even more difficult ones like the derivative of e2x. Give yourself a pat in the back because there is only one last derivative to look at now. This will be the derivative of the logarithmic function lnx.
How to Find Derivative of lnx
To find the derivative of lnx, let us start from the very beginning. Consider the equation
-
Equation 1: Derivative of lnx pt.1 Note that ln is log with base e, so this can be rewritten as
Equation 2: Derivative of lnx pt.2 We need to convert this into exponential form. Doing so will give us the following equation:
Equation 3: Derivative of lnx pt.3 Let's assume that this is differentiable. Now what we want to do here is something called implicit differentiation. In other words, we want to take the derivative of both sides of the equation. Doing so will give us,
Equation 4: Derivative of lnx pt.4 Notice that dy/dx shows up in the equation because of the chain rule. If you don't understand implicit differentiation or the derivative of exponential functions, we prefer you click those hyperlinks!
Here is the interesting part. Recall that y=lnx. We can actually substitute y with this in our equation. Doing this will give us:
Equation 5: Derivative of lnx pt.5 Now you may think to yourself that we just made the equation even more complicating, but do not worry! The elnx in our equation can be simplified to x. If you have trouble understanding that, we recommend you to look at the section "Ln as inverse function of exponential function" of this link
http://www.rapidtables.com/math/algebra/Ln.htmSince elnx=x, then we can simply our equation to
Equation 6: Derivative of lnx pt.6 Lastly we divide both sides of the equation by x, thus giving us the final result:
Equation 7: Derivative of lnx pt.7 We're done!
How to Find Second Derivative of lnx
First of all, recall that the first derivative of lnx is:
-
Equation 7: Derivative of lnx pt.7 Taking the second derivative is not that challenging because we only need to use the quotient rule. Recall that the formula of the quotient rule is:
Formula 1: Quotient Rule The second derivative will be:
Equation 8: Second Derivative of lnx pt.1 Hence we can conclude that:
Equation 9: Second Derivative of lnx pt.2
Proof of the Derivative of lnx
You may think that finding the derivative of is the same as proving it, but it is actually a little bit different. This is because we cannot assume that y=lnx is differentiable. Hence we cannot use implicit differentiation like we did earlier. This means that we are going to use a different approach to proving the derivative of lnx.
First of all, consider the following equation:
-
Equation 10: Proof of Derivative of lnx pt.1 We are going to change some variables here and say that xh=n1 and so n=hx. Notice that for the equation n=hx as n→∞, we see that h→0. Hence we can rewrite our formula to be the following:
Equation 11: Proof of Derivative of lnx pt.2 Then we can take both sides of the equation to the power of x1, thus giving us
Equation 12: Proof of Derivative of lnx pt.3 We will use this formula later in the proof and do a substitution.
Now to take the derivative of f(x)=lnx, we need to go back to the very beginning and use the definition of derivative. Recall that the definition of derivative is
Formula 2: Definition of Derivative If f(x)=lnx, then we will have that
Equation 13: Proof of Derivative of lnx pt.4 Using the logarithm quotient rule, we can change our equation to be
Equation 14: Proof of Derivative of lnx pt.5 Simplifying this equation will give us
Equation 15: Proof of Derivative of lnx pt.6 We can then use the Logarithm power rule so that
Equation 16: Proof of Derivative of lnx pt.7 Again, if you are not very familiar with logarithm rules, then we suggest you look at the section "Natural logarithm rules and properties" of this link.
Now using the property of limits, we can transport the limit so that it is inside the brackets of ln. This will give us
Equation 17: Proof of Derivative of lnx pt.8 Now you might be asking yourself, why does the inside brackets of ln look so familiar? Well that's because earlier we showed that
Equation 18: Proof of Derivative of lnx pt.9 So we could actually do a substitution here! Doing so will give us
Equation 19: Proof of Derivative of lnx pt.10 Using the Logarithm power rule, we can bring the x1 as a coefficient. This gives us
Equation 20: Proof of Derivative of lnx pt.11 Finally, we know that lne=1, so finally we can say that
Equation 21: Proof of Derivative of lnx pt.12
dxdlogb()=()⋅lnb1⋅dxd()
dxdInx=x1
dxdIn()=()1⋅dxd()
remaining today
remaining today