# Parallel and perpendicular lines in linear functions

## Everything You Need in One PlaceHomework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered. | ## Learn and Practice With EaseOur proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals. | ## Instant and Unlimited HelpOur personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now! |

#### Make math click 🤔 and get better grades! 💯Join for Free

0/1

##### Intros

0/7

##### Examples

###### Lessons

- Determine whether the three points A (-2,-1), B(0,4) & C(2,9) all lie on the same line.
- Determine the following slopes are parallel, perpendicular, or neither.

i) $m_1 = {2 \over 5}, m_2= {2 \over 5}$

ii) $m_1 = {1 \over5} , m_2 = - {5 \over 1}$

iii) $m_1 = {4 \over 7}, m_2 = {12 \over 21}$

iv) $m_1 =$undefined, $m_2 = 0$

v) $m_1 =mn^{-1}; m_2 =-m^{-1}b$ - Given the points of two lines, determine when the lines are parallel, perpendicular or neither.
- Show that the points A(-3,0), B(1,2) and C(3,-2) are the vertices of a right triangle.
- Show that the points A(-1,-1), B(3,0), C(2,4) and D(-2,3) are the vertices of a square.