Transformations of functions: Horizontal translations
Transformations of functions: Horizontal translations
Horizontal translations refer to movements of a graph of a function horizontally along the xaxis by changing the x values. So, if y = f(x), then y = (x –h) results in a horizontal shift. If h > 0, then the graph shifts h units to the right; while If h < 0, then the graph shifts h units to the right.
Related concepts:
 Graphing transformations of trigonometric functions
Lessons

a)
Sketch the following functions on the same set of coordinate axes:
$y = {\left( x \right)^2}$ VS. $y = {\left( {x  6} \right)^2}$ VS. $y = {\left( {x + 5} \right)^2}$ 
b)
Compared to the graph of $y = {x^2}$:
• the graph of $y = {\left( {x  6} \right)^2}$ is translated "horizontally" ________ units to the ______________.
• the graph of $y = {\left( {x + 5} \right)^2}$ is translated "horizontally" ________ units to the ______________.


a)
$y = f\left( {x8} \right)$

b)
$y = f\left( {x+3} \right)$

c)
In conclusion:
• $\left( x \right) \to \left( {x8} \right)$: shift __________ to the __________. All x coordinates ? ____________________
• $\left( x \right) \to \left( {x+3} \right)$: shift __________ to the __________. All x coordinates ? ____________________
