Still Confused?

Try reviewing these fundamentals first

- Home
- NZ Year 13 Maths
- Simultaneous Equations (Advanced)

Still Confused?

Try reviewing these fundamentals first

Still Confused?

Try reviewing these fundamentals first

Nope, got it.

That's the last lesson

Start now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started Now- Lesson: 15:00
- Lesson: 22:35
- Lesson: 34:21

Basic Concepts: Solving 3 variable systems of equations by substitution, Solving 3 variable systems of equations by elimination

- 1.
**System of Equations With No Solution**Solve the following system of equations:

$2x - 3y + z = 3$

$6x - 12y + 4z = 8$

$-3x + 6y - 2z = 6$

- 2.
**System of Equations With Infinite Solutions**Solve the following system of equations:

$x + 6y - 7z = -2$

$2x + 12y - 14z = -4$

$4x + 24y - 28z = -8$

- 3.
**System of Equations With Infinite Solutions - Extended**Solve the following system of equations:

$x - 2y + z = 3$

$3x - 6y + 3z = 9$

$2x + 5y - z = -6$

11.

Simultaneous Equations (Advanced)

11.1

Simultaneous linear equations

11.2

Simultaneous linear-quadratic equations

11.3

Simultaneous quadratic-quadratic equations

11.4

Solving 3 variable simultaneous equations by substitution

11.5

Solving 3 variable simultaneous equations by elimination

11.6

Solving 3 variable simultaneous equations with no or infinite solutions

11.7

Word problems relating 3 variable simultaneous equations