Function notation

0/1
?
Intros
Lessons
  1. Introduction to function notations
    Equations VS. Functions
0/6
?
Examples
Lessons
  1. If f(x)=5x2x+6 f(x) = 5x^2-x+6 find the following
    1. f(){f(\heartsuit)}
    2. f(θ){f(\theta)}
    3. f(3){f(3)}
    4. f(1){f(-1)}
    5. f(3x){f(3x)}
    6. f(x){f(-x)}
    7. f(3x4){f(3x-4)}
    8. 3f(x){3f(x)}
    9. f(x)3{f(x)-3}
  2. If f(x) = 6 - 4x, find:
    1. f(3)
    2. f(-8)
    3. f(-2/5)
  3. If f(r) = 2πr2h2\pi r^2h, find f(x+2)
    1. If f(x)=x,{f(x) = \sqrt{x},} write the following in terms of the function f.{f.}
      1. x+5{\sqrt{x}+5}
      2. x+5{\sqrt{x+5}}
      3. 2x3{\sqrt{2x-3}}
      4. 8x{-8\sqrt{x}}
      5. 82x3{-8\sqrt{2x-3}}
      6. 4x5+914\sqrt{x^{5}+9}-1
    2. If f(x) = -3x + 7, solve for x if f(x) = -15
      1. The temperature below the crust of the Earth is given by C(d) = 12d + 30, where C is in Celsius and d is in km.
        i.) Find the temperature 15 km below the crust of the Earth.
        ii.) What depth has a temperature of 186 186^\circ C?
        Topic Notes
        ?
        Function notation is another way to express the y value of a function. Therefore, when graphing, we can always label the y-axis as f(x) too. It might look confusing, but let us show you how to deal with it.