Still Confused?

Try reviewing these fundamentals first

- Home
- ACCUPLACER Test Prep
- Radicals (Advanced)

Still Confused?

Try reviewing these fundamentals first

Still Confused?

Try reviewing these fundamentals first

Nope, got it.

That's the last lesson

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Intro Lesson16:11
- Lesson: 1a0:22
- Lesson: 1b1:00
- Lesson: 1c2:56
- Lesson: 1d0:28
- Lesson: 1e3:34
- Lesson: 2a6:43
- Lesson: 2b4:28
- Lesson: 2c5:42
- Lesson: 2d2:48
- Lesson: 2e5:58
- Lesson: 2f2:41
- Lesson: 318:21
- Lesson: 4a0:55
- Lesson: 4b0:37
- Lesson: 4c3:29
- Lesson: 4d1:57

Basic Concepts:Basic radical functions, Transformations of radical functions, Square root of a function, Solving radical equations,

$\cdot$ even root: ${^{even}}\sqrt{positive}=defined$ i.e. $\sqrt{64}=8$

${^{even}}\sqrt{negative}=undefined$ i.e. $\sqrt{-64}=undefined$

$\cdot$ odd root: ${^{odd}}\sqrt{positive\;or\;negative}=defined$ i.e. ${^3}\sqrt{64}=4$

i.e. ${^3}\sqrt{-64}=-4$

${^{even}}\sqrt{negative}=undefined$ i.e. $\sqrt{-64}=undefined$

$\cdot$ odd root: ${^{odd}}\sqrt{positive\;or\;negative}=defined$ i.e. ${^3}\sqrt{64}=4$

i.e. ${^3}\sqrt{-64}=-4$

- Introduction$\cdot$What is a "radical"?

$\cdot$square root VS. cubic root

$\cdot$common squares to memorize

- 1.
**Evaluating Radicals Algebraically**

Without using a calculator, evaluate:a)$\sqrt { - 9}$b)${^3}\sqrt{{ - 27}}$c)${^6}\sqrt{{\frac{1}{{64}}}}$d)${^4}\sqrt{{ - 81}}$e)$9{^3}\sqrt{{64}}$ - 2.
**Evaluating Radicals Using a Calculator**

Use a calculator to determine:a)${\;}{^6}\sqrt{{729}}$b)${^5}\sqrt{{-1024}}$c)${^5}\sqrt{{\frac{{32}}{{243}}}}$d)${^6}\sqrt{{600}}$e)${^5}\sqrt{{0.5}}$f)$\frac{3}{4}{^4}\sqrt{{36}}$ - 3.
**Radical Rules**

Combining radicals: Do's and Don'ts - 4.Determine whether the following statements are true or false.a)$\sqrt 2 \times \sqrt 3 = \sqrt 6$b)$\frac{{\sqrt {20} }}{{\sqrt {10} }} = \sqrt 2$c)$\sqrt {15} \cdot\sqrt {30} \cdot\sqrt 2 = 900$d)${^3}\sqrt{5} \cdot {^3}\sqrt{{25}} = 5$

We have over 2320 practice questions in ACCUPLACER Test Prep for you to master.

Get Started Now