- Home
- Third Year Maths
- Rational Expressions
Simplifying complex fractions
- Intro Lesson: a3:59
- Intro Lesson: b0:53
- Intro Lesson: c2:23
- Lesson: 17:04
- Lesson: 212:53
- Lesson: 38:57
Simplifying complex fractions
Lessons
Steps to solving complex fractions:
1. Write the main numerator and denominator as single fractions.
2. Set up a division statement.
3. Simplify the expression.
1. Write the main numerator and denominator as single fractions.
2. Set up a division statement.
3. Simplify the expression.
- IntroductionIntroduction to Simplifying Complex Fractionsa)Type 1: singlefractionsinglefractionb)Type 2: multiplefractionmultiplefractionc)Type 2 Special Case: Fractions Involving Negative Exponents
- 1.Type 1: singlefractionsinglefraction
simplify:
i) 9832
ii) y22xy73x212x5y3
iii) xx−255x−10 - 2.Type 2: multiplefractionmultiplefraction
simplify:
i) x3y2−x1y3x2−y1
ii) z21−z321−z4+z24 - 3.Fractions Involving Negative Exponents
Simplify:
i) 3x−1−9x−2x−1−3x−2
ii) (x−2−y−2)−1
Do better in math today
30.
Rational Expressions
30.1
Simplifying rational expressions and restrictions
30.2
Adding and subtracting rational expressions
30.3
Multiplying rational expressions
30.4
Dividing rational expressions
30.5
Solving rational equations
30.6
Applications of rational equations
30.7
Simplifying complex fractions
30.8
Partial fraction decomposition