5.3 Introduction to infinite series

Introduction to infinite series


Note *Properties of Infinite Series:

If n=ian\sum_{n=i}^{\infty}a_n and n=ibn\sum_{n=i}^{\infty}b_n are convergent series, then we can say that:

a) n=ian+\sum_{n=i}^{\infty}a_n+ n=ibn=\sum_{n=i}^{\infty}b_n=n=i(an+bn)\sum_{n=i}^{\infty}(a_n+b_n)
b) n=ian\sum_{n=i}^{\infty}a_n- n=ibn=\sum_{n=i}^{\infty}b_n=n=i(anbn)\sum_{n=i}^{\infty}(a_n-b_n)
c) n=ican=\sum_{n=i}^{\infty}ca_n=cn=ianc\sum_{n=i}^{\infty}a_n
  • 1.
    Overview of Infinite Series
Teacher pug

Introduction to infinite series

Don't just watch, practice makes perfect.

We have over 510 practice questions in Calculus 2 for you to master.