# Root test

##### Intros

##### Examples

###### Lessons

**Useful Limit Question Used for Root test**

Show that $\lim$_{n →$\infty$}$n^{\frac{1}{n}}=1$. This fact is useful when doing the root test for infinite series.

**Convergence & Divergence of Root test**

Use the Root test to determine if the series converges or diverges. If the root test does not determine the convergence or divergence of the series, then resort to another test.

###### Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

In this section, we will look at a very useful limit question that will be used frequently when doing the root test. We will then learn and apply the root test to determine the convergence and divergence of series. Root test requires you to calculate the value of R using the formula below. If R is greater than 1, then the series is divergent. If R is less than 1, then the series is convergent. If R is equal to 1, then the test fails and you would have to use another test to show the convergence or divergence of the series. You may notice that this looks very similar to the ratio test. Also note that if the root test fails, then the ratio test will also fail. Thus, make sure to not waste time doing the ratio test if the root test fails.

Note *Let $\sum a_n$ be a positive series. Then we say that

$R=$ $\lim$

Where:

1. If $R$ < $1$, then the series is convergent (or absolutely convergent)

2. If $R$ > $1$, then the series is divergent

3. If $R=1$, then the series could either be divergent, or convergent

Basically if $R=1$, then the root test fails and would require a different test to determine the convergence or divergence of the series.

Note that if the root test gives $R=1$, then so will the ratio test.

$R=$ $\lim$

_{n →$\infty$}$\mid a_n\mid^{\frac{1}{n}}$Where:

1. If $R$ < $1$, then the series is convergent (or absolutely convergent)

2. If $R$ > $1$, then the series is divergent

3. If $R=1$, then the series could either be divergent, or convergent

Basically if $R=1$, then the root test fails and would require a different test to determine the convergence or divergence of the series.

Note that if the root test gives $R=1$, then so will the ratio test.

2

videos

remaining today

remaining today

5

practice questions

remaining today

remaining today