# Convergence and divergence of normal infinite series

##### Intros

##### Examples

###### Lessons

**Converging and Diverging Series with the formula of partial sums**

You are given the general formula of partial sums for the following series. Determine whether the series converges or diverges.**Converging and Diverging Series without the formula of partial sums**

Determine whether the following series converges or diverges.

###### Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

In this section, we will take a look at normal infinite series that can be converted into partial sums. We will start by learning how to convert the series into a partial sum, and then take the limit. If we take the limit as n goes to infinity, then we can determine if the series is converging or diverging. Note that not all series can be turned into a partial sum. In that case, you would have to use other methods to see if the infinite series is convergent or divergent.

###### Basic Concepts

###### Related Concepts

2

videos

remaining today

remaining today

5

practice questions

remaining today

remaining today