# Convergence & divergence of geometric series

##### Intros

##### Examples

###### Lessons

**Convergence of Geometric Series**

Show that the following series are convergent and find its sum:**Divergence of Geometric Series**

Show that the following series are divergent:

###### Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

In this section, we will take a look at the convergence and divergence of geometric series. We've learned about geometric sequences in high school, but in this lesson we will formally introduce it as a series and determine if the series is divergent or convergent. For the first few questions we will determine the convergence of the series, and then find the sum. For the last few questions, we will determine the divergence of the geometric series, and show that the sum of the series is infinity.

Formulas for Geometric Series:

$\sum_{n=0}^{\infty}ar^n=\frac{a}{1-r}$ if -1 < $r$ < 1

$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}$ if -1 < $r$ < 1

If -1 < $r$ < 1, then the geometric series converges. Otherwise, the series diverges.

$\sum_{n=0}^{\infty}ar^n=\frac{a}{1-r}$ if -1 < $r$ < 1

$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}$ if -1 < $r$ < 1

If -1 < $r$ < 1, then the geometric series converges. Otherwise, the series diverges.

###### Related Concepts

2

videos

remaining today

remaining today

5

practice questions

remaining today

remaining today