# Geometric series

##### Examples

###### Lessons

**Geometric series formula:${s_n} = \frac{{{t_1}\;\left( {{r^n} - 1} \right)}}{{r - 1}}$**

Determine the sum of the first twelve terms of the geometric series: 5 – 10 + 20 – 40 + … .**Geometric series formula: $s_{n}=\frac{r \cdot t_{n}-t_{1}}{r-1}$**

Determine the sum of the geometric series: 8 + 2 + $\frac{1}{2}$ + …. + $\frac{1}{{512}}$ .- A tennis ball is dropped from the top of a building 15 m high. Each time the ball hits the ground, it bounces back to only 60% of its previous height. What is the total vertical distance the ball has travelled when it hits the ground for the fifth time?

###### Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

A geometric series is the sum of a finite number of terms in a geometric sequence. Just like the arithmetic series, we also have geometric series formulas to help us with that.

The sum of $\, n\,$ terms of a geometric series:

$\large S_n = \frac{t_1(r^{n}-1)} {r-1} = \frac{r \cdot t_{n} - t_{1}} {r-1}$

###### Basic Concepts

2

videos

remaining today

remaining today

5

practice questions

remaining today

remaining today