Pascal's triangle
Examples
Lessons
 Expand:
 Pascal's Triangle  sum of numbers in each row

Row Pattern Corresponding binomial expression Sum of the numbers in,the row Express the sum as a power of 2 1 1 ${\left( {a + b} \right)^0}$ 2 1 1 ${\left( {a + b} \right)^1}$ 3 1 2 1 ${\left( {a + b} \right)^2}$ 4 1 3 3 1 ${\left( {a + b} \right)^3}$ 5 1 4 6 4 1 ${\left( {a + b} \right)^4}$ : : : : : n ${\left( {a + b} \right)^{n  1}}$ n+1 ${\left( {a + b} \right)^n}$  What is the sum of the numbers in the 10th row of Pascal's Triangle?
 What is the sum of the coefficients in the expansion of ${\left( {a + b} \right)^{50}}$ ?
 Express the number pattern of Pascal's triangle in "combination" form, then deduce the following formula:
$\;$ ${}_n^{}{C_0}$ + ${}_n^{}{C_1}$ + ${}_n^{}{C_2}$ + ${}_n^{}{C_3}$ + … + ${}_n^{}{C_{n  2}}$ + ${}_n^{}{C_{n  1}}$ + ${}_n^{}{C_n}$ = ${2^n}$

 Without using a calculator, evaluate:
Free to Join!
StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and stepbystep explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.
Easily See Your Progress
We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.Make Use of Our Learning Aids
Earn Achievements as You Learn
Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.Create and Customize Your Avatar
Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.
Topic Notes
A Pascal's triangle is a number triangle of the binomial coefficients. The first row of the triangle is always 1.
Basic Concepts
2
videos
remaining today
remaining today
5
practice questions
remaining today
remaining today