# AU Year 9 Maths Help & Practice!

## All in One PlaceEverything you need for better marks in university, secondary, and primary classes. | ## Learn with EaseWe’ve mastered courses for WA, NSW, QLD, SA, and VIC, so you can study with confidence. | ## Instant and Unlimited HelpGet the best tips, walkthroughs, and practice questions. |

#### Make math click 💡 and get better grades! Join for Free

##### 1Number System and Radicals

##### 2Adding and Subtracting Integers

##### 3Multiplying and Dividing Integers

##### 4Ratios, Rates, and Proportions

##### 5Percents

##### 6Lines, Angles and Transversals

##### 7Pythagorean Theorem

##### 8Introduction to Surface Area of 3D Shapes

##### 9Introduction to Volume

##### 10Scale Factors and Similarity

##### 11Introduction to Trigonometry

- 11.1Use sine ratio to calculate angles and side (Sin = $\frac{o}{h}$ )
- 11.2Use cosine ratio to calculate angles and side (Cos = $\frac{a}{h}$ )
- 11.3Use tangent ratio to calculate angles and side (Tan = $\frac{o}{a}$ )
- 11.4Combination of SohCahToa questions
- 11.5Solving expressions using 45-45-90 special right triangles
- 11.6Solving expressions using 30-60-90 special right triangles
- 11.7Word problems relating ladder in trigonometry
- 11.8Word problems relating guy wire in trigonometry
- 11.9Other word problems relating angles in trigonometry

- 11.1Use sine ratio to calculate angles and side (Sin = $\frac{o}{h}$ )
##### 12Patterns and Solving Equations

##### 13Linear Equations (Basic)

- 13.1Model and solve one-step linear equations:
*ax = b*,*x/a = b* - 13.2Solving two-step linear equations using addition and subtraction:
*ax + b = c* - 13.3Solving two-step linear equations using multiplication and division:
*x/a + b = c* - 13.4Solving two-step linear equations using distributive property:
*a(x + b) = c*

- 13.1Model and solve one-step linear equations:
##### 14Solving Linear Equations

##### 15Solving Linear Inequalities

##### 16Introduction to Relations and Functions

##### 17Linear Relations

##### 18Linear Functions

- 18.1Distance formula: $d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
- 18.2Midpoint formula: $M = ( \frac{x_1+x_2}2 ,\frac{y_1+y_2}2)$
- 18.3Gradient equation: $m = \frac{y_2-y_1}{x_2- x_1}$
- 18.4Gradient intercept form: y = mx + b
- 18.5General form: Ax + By + C = 0
- 18.6Gradient-point form: $y - y_1 = m (x - x_1)$
- 18.7Rate of change
- 18.8Graphing linear functions using table of values
- 18.9Graphing linear functions using x- and y-intercepts
- 18.10Graphing from gradient-intercept form y=mx+b
- 18.11Graphing linear functions using a single point and gradient
- 18.12Word problems of graphing linear functions
- 18.13Parallel and perpendicular lines in linear functions
- 18.14Applications of linear relations

- 18.1Distance formula: $d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
##### 19Solving Simultaneous Equations

- 19.1Determining number of solutions to linear equations
- 19.2Solving simultaneous equations by graphing
- 19.3Solving simultaneous equations by elimination
- 19.4Solving simultaneous equations by substitution
- 19.5Money related questions in linear equations
- 19.6Unknown number related questions in linear equations
- 19.7Distance and time related questions in linear equations
- 19.8Rectangular shape related questions in linear equations

- 19.1Determining number of solutions to linear equations
##### 20Introduction to Powers and Exponents

##### 21Exponents

- 21.1Product rule of exponents
- 21.2Quotient rule of exponents
- 21.3Power of a product rule
- 21.4Power of a quotient rule
- 21.5Power of a power rule
- 21.6Negative exponent rule
- 21.7Combining the exponent rules
- 21.8Scientific notation
- 21.9Convert between radicals and rational exponents
- 21.10Solving for exponents

- 21.1Product rule of exponents
##### 22Introduction to Polynomials

##### 23Multiplying and Dividing Polynomials

##### 24Factorising Polynomial Expressions

- 24.1Common factors of polynomials
- 24.2Factorising polynomials by grouping
- 24.3Solving polynomials with the unknown "b" from
*x^2 + bx + c* - 24.4Solving polynomials with the unknown "c" from
*x^2 + bx + c* - 24.5Factorising polynomials:
*x^2 + bx + c* - 24.6Applications of polynomials:
*x^2 + bx + c* - 24.7Solving polynomials with the unknown "b" from $ax^2 + bx + c$
- 24.8Factorising polynomials: $ax^2 + bx + c$
- 24.9Factorising perfect square trinomials:
*(a + b)^2 = a^2 + 2ab + b^2*or*(a - b)^2 = a^2 - 2ab + b^2* - 24.10Find the difference of squares:
*(a - b)(a + b) = (a^2 - b^2)* - 24.11Evaluating polynomials
- 24.12Using algebra tiles to factorise polynomials
- 24.13Solving polynomial equations
- 24.14Word problems of polynomials

- 24.1Common factors of polynomials
##### 25Radicals

##### 26Algebraic Fractions

- 26.1Simplifying algebraic fractions and restrictions
- 26.2Adding and subtracting algebraic fractions
- 26.3Multiplying algebraic fractions
- 26.4Dividing algebraic fractions
- 26.5Solving equations with algebraic fractions
- 26.6Applications of equations with algebraic fractions
- 26.7Simplifying complex fractions
- 26.8Partial fraction decomposition

- 26.1Simplifying algebraic fractions and restrictions
##### 27Reciprocal Functions

##### 28Introduction to Probability

##### 29Statistics

##### 30Data and Graphs