# Point of discontinuity

### Point of discontinuity

#### Lessons

• "point of discontinuity" exists when the numerator and denominator have a factor in common.
i.e. $\left( x \right) = \frac{{ - \left( {3x - 8} \right)\left( {x + 5} \right)\left( {2x - 7} \right)}}{{\left( {x + 5} \right)\left( {4x + 9} \right)\left( {3x + 8} \right)\left( {2x - 7} \right)}}$ ; points of discontinuity exist at $x = - 5$ and $x = \frac{7}{2}$ .
• To determine the coordinates of the point of discontinuity:
1) Factor both the numerator and denominator.
2) Simplify the rational expression by cancelling the common factors.
3) Substitute the non-permissible values of x into the simplified rational expression to obtain the corresponding values for the y-coordinate.
• 1.
Investigating How a Point of Discontinuity Appears on a Graph
Sketch and compare the following two functions:
i) $f\left( x \right) = 2x + 5$
ii) $g\left( x \right) = \frac{{2{x^2} + 11x + 15}}{{x + 3}}$

• 2.
Sketching Rational Functions Incorporating Asymptotes and Points of Discontinuity
Sketch the rational function: $f\left( x \right) = \frac{{2{x^2} - 7x + 5}}{{2{x^3} - 11{x^2} + 19x - 10}}$