Still Confused?

Try reviewing these fundamentals first

- Home
- AU Year 11 Maths
- Limits

Still Confused?

Try reviewing these fundamentals first

Nope, got it.

That's the last lesson

Start now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started Now- Lesson: 110:24
- Lesson: 23:55
- Lesson: 3a7:25
- Lesson: 49:43
- Lesson: 510:17

There are times when applying direct substitution would only give us an undefined solution. In this section, we will explore some cool tricks to evaluate limits algebraically, such as using conjugates, trigonometry, common denominators, and factoring.

- 1.
**Simplify Out "Zero Denominator" by Cancelling Common Factors**Find $\lim_{x \to 3} \;\frac{{{x^2} - 9}}{{x - 3}}$

- 2.
**Expand First, Then Simplify Out "Zero Denominator" by Cancelling Common Factors**Evaluate $\lim_{h \to 0} \;\frac{{{{\left( {5 + h} \right)}^2} - 25}}{h}$

- 3.
**Simplify Out "Zero Denominator" by Rationalizing Radicals**Evaluate:

a)$\lim_{x \to 4} \;\frac{{4 - x}}{{2 - \sqrt x }}$*(hint: rationalize the denominator by multiplying its conjugate)* - 4.
**Find Limits of Functions involving Absolute Value**Evaluate $\lim_{x \to 0} \;\frac{{\left| x \right|}}{x}$

*(hint: express the absolute value function as a piece-wise function)* - 5.
**Find Limits Using the Trigonometric Identity:$\lim_{\theta \to 0} \;\frac{{{sin\;}\theta}}{{\theta}}=1$**Find $\lim_{x \to 0} \;\frac{{{sin\;}5x}}{{2x}}$

30.

Limits

30.1

Finding limits from graphs

30.2

Continuity

30.3

Finding limits algebraically - direct substitution

30.4

Finding limits algebraically - when direct substitution is not possible

30.5

Infinite limits - vertical asymptotes

30.6

Limits at infinity - horizontal asymptotes

30.7

Intermediate value theorem

30.8

Squeeze theorem

30.1

Finding limits from graphs

30.2

Continuity

30.3

Finding limits algebraically - direct substitution

30.4

Finding limits algebraically - when direct substitution is not possible

30.5

Infinite limits - vertical asymptotes

30.6

Limits at infinity - horizontal asymptotes

30.7

Intermediate value theorem

30.8

Squeeze theorem