Still Confused?

Try reviewing these fundamentals first

- Home
- UK Year 10 Maths
- Factorising Polynomial Expressions

Still Confused?

Try reviewing these fundamentals first

Still Confused?

Try reviewing these fundamentals first

Nope, got it.

That's the last lesson

Start now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started NowStart now and get better maths marks!

Get Started Now- Intro Lesson5:52
- Lesson: 1a1:45
- Lesson: 1b1:20

In this lesson, we will be doing trinomial factoring to find all possible answers for the unknowns in the term in the middle of the polynomials. By doing so, we will need to reverse the process of FOIL so that we can convert the trinomials into two binomials.

Related Concepts: Factor by taking out the greatest common factor, Factor by grouping, Factoring difference of squares: $x^2 - y^2$, Factoring trinomials

- IntroductionFOIL method:

i) What is the FOIL method?

ii) How to use it? - 1.Find four examples of k:a)${x^2+kx-8}$b)${x^2+kx+6}$

22.

Factorising Polynomial Expressions

22.1

Common factors of polynomials

22.2

Factorising polynomials by grouping

22.3

Solving polynomials with the unknown "b" from $x^2 + bx + c$

22.4

Solving polynomials with the unknown "c" from $x^2 + bx + c$

22.5

Factorising polynomials: $x^2 + bx + c$

22.6

Applications of polynomials: $x^2 + bx + c$

22.7

Solving polynomials with the unknown "b" from $ax^2 + bx + c$

22.8

Factorising polynomials: $ax^2 + bx + c$

22.9

Factorising perfect square trinomials: $(a + b)^2 = a^2 + 2ab + b^2$ or $(a - b)^2 = a^2 - 2ab + b^2$

22.10

Find the difference of squares: $(a - b)(a + b) = (a^2 - b^2)$

22.11

Evaluating polynomials

22.12

Using algebra tiles to factorise polynomials

22.13

Solving polynomial equations

22.14

Word problems of polynomials

We have over 1410 practice questions in UK Year 10 Maths for you to master.

Get Started Now22.1

Common factors of polynomials

22.2

Factorising polynomials by grouping

22.3

Solving polynomials with the unknown "b" from $x^2 + bx + c$

22.4

Solving polynomials with the unknown "c" from $x^2 + bx + c$

22.5

Factorising polynomials: $x^2 + bx + c$

22.6

Applications of polynomials: $x^2 + bx + c$

22.7

Solving polynomials with the unknown "b" from $ax^2 + bx + c$

22.8

Factorising polynomials: $ax^2 + bx + c$

22.9

Factorising perfect square trinomials: $(a + b)^2 = a^2 + 2ab + b^2$ or $(a - b)^2 = a^2 - 2ab + b^2$

22.10

Find the difference of squares: $(a - b)(a + b) = (a^2 - b^2)$

22.11

Evaluating polynomials

22.13

Solving polynomial equations

22.14

Word problems of polynomials