Still Confused?

Try reviewing these fundamentals first.

- Home
- UK Year 10 Maths
- Functions

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 114:57
- Lesson: 210:39
- Lesson: 310:30

Related concepts: Transformations of functions: Horizontal translations, Transformations of functions: Vertical translations, Transformations of functions: Horizontal stretches, Transformations of functions: Vertical stretches,

- 1.
**Introduction to Function Notation**

If $f(x) = 5x^2-x+6$ find the followinga)${f(\heartsuit)}$b)${f(\theta)}$c)${f(3)}$d)${f(-1)}$e)${f(3x)}$f)${f(-x)}$g)${f(3x-4)}$h)${3f(x)}$i)${f(x)-3}$ - 2.
**Express a Function as $f($$)$**

If ${f(x) = \sqrt{x},}$ write the following in terms of the function ${f.}$a)${\sqrt{x}+5}$b)${\sqrt{x+5}}$c)${\sqrt{2x-3}}$d)${-8\sqrt{x}}$e)${-8\sqrt{2x-3}}$f)$4\sqrt{x^{5}+9}-1$ - 3.
**Find the Value of a Function from Its Graph**

Find the value of the following from the given graph

a)${f(3)}$b)${f(0)}$c)${f(-5)}$d)${f(x)=5,x=?}$e)${f(x)=-1,x=?}$f)${f(x)=0,x=?}$

14.

Functions

14.1

Function notation (Advanced)

14.2

Operations with functions

14.3

Adding functions

14.4

Subtracting functions

14.5

Multiplying functions

14.6

Dividing functions

14.7

Composite functions

14.8

Inequalities of combined functions

14.9

Inverse functions

14.10

One to one functions

14.11

Difference quotient: applications of functions

We have over 1410 practice questions in UK Year 10 Maths for you to master.

Get Started Now