- Home
- GCSE Maths
- Functions
Function notation (advanced)
- Lesson: 114:57
- Lesson: 210:39
- Lesson: 310:30
Function notation (advanced)
Related Concepts: Transformations of functions: Horizontal translations, Transformations of functions: Vertical translations, Transformations of functions: Horizontal stretches, Transformations of functions: Vertical stretches
Lessons
- 1.Introduction to Function Notation
If f(x)=5x2−x+6 find the followinga)f(♡)b)f(θ)c)f(3)d)f(−1)e)f(3x)f)f(−x)g)f(3x−4)h)3f(x)i)f(x)−3 - 2.Express a Function as f()
If f(x)=x, write the following in terms of the function f.a)x+5b)x+5c)2x−3d)−8xe)−82x−3f)4x5+9−1 - 3.Find the Value of a Function from Its Graph
Find the value of the following from the given graph
a)f(3)b)f(0)c)f(−5)d)f(x)=5,x=?e)f(x)=−1,x=?f)f(x)=0,x=?
Do better in math today
24.
Functions
24.1
Function notation
24.2
Operations with functions
24.3
Adding functions
24.4
Subtracting functions
24.5
Multiplying functions
24.6
Dividing functions
24.7
Composite functions
24.8
Inequalities of combined functions
24.9
Inverse functions
24.10
One to one functions
24.11
Difference quotient: applications of functions