Still Confused?

Try reviewing these fundamentals first

Algebra

Domain and range of a functionAlgebra

Identifying functionsAlgebra

Function notation (Advanced)- Home
- ACCUPLACER Test Prep
- Functions

Still Confused?

Try reviewing these fundamentals first

Algebra

Domain and range of a functionAlgebra

Identifying functionsAlgebra

Function notation (Advanced)Still Confused?

Try reviewing these fundamentals first

Algebra

Domain and range of a functionAlgebra

Identifying functionsAlgebra

Function notation (Advanced)Nope, got it.

That's the last lesson

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Intro Lesson12:05
- Lesson: 111:06
- Lesson: 2a5:00
- Lesson: 2b8:02
- Lesson: 2c15:06
- Lesson: 3a5:12
- Lesson: 3b4:39
- Lesson: 3c4:30

An inverse function is a function that reverses all the operations of another function. Therefore, an inverse function has all the points of another function, except that the x and y values are reversed.

- Introduction

• What is "inverse", and what does "inverse" do to a function?

• Inverse: switch "x" and "y"

• Inverse: reflect the original function in the line "y = x" - 1.
**Graph an inverse**

Given the graph of $y = f\left( x \right)$ as shown,

a)Sketch the graph of the inverse $y = {f^{ - 1}}\left( x \right)$ in 2 ways:

i) by reflecting $f\left( x \right)$ in the line $y = x$

ii) by switching the x and y coordinates for each point on $f\left( x \right)$b)Is $f\left( x \right)$ a function?

Is ${f^{ - 1}}\left( x \right)$ a function? - 2.
**Inverse of a Quadratic Function**

Consider the quadratic function: $f(x) = (x+4)^2 + 2$a)Graph the function $f\left( x \right)$ and state the domain and range.b)Graph the inverse ${f^{ - 1}}\left( x \right)$ and state the domain and range.c)Is ${f^{ - 1}}\left( x \right)$ a function?

If not, describe how to restrict the domain of $f\left( x \right)$ so that the inverse of $f\left( x \right)$ can be a function. - 3.
**Determine the equation of the inverse.**

Algebraically determine the equation of the inverse ${f^{ - 1}}\left( x \right)$, given:a)$f\left( x \right) = - 5x + 4$b)$f\left( x \right) = {\left( {7x - 8} \right)^3} - 1$c)$f\left( x \right) = \frac{{3x}}{{2 + x}}$

40.

Functions

40.1

Function notation

40.2

Operations with functions

40.3

Adding functions

40.4

Subtracting functions

40.5

Multiplying functions

40.6

Dividing functions

40.7

Composite functions

40.8

Inequalities of combined functions

40.9

Inverse functions

40.10

One to one functions

40.11

Difference quotient: applications of functions

We have over 2320 practice questions in ACCUPLACER Test Prep for you to master.

Get Started Now