Improper integrals

All You Need in One Place

Everything you need for better marks in primary, GCSE, and A-level classes.

Learn with Confidence

We’ve mastered the UK’s national curriculum so you can study with confidence.

Instant and Unlimited Help

24/7 access to the best tips, walkthroughs, and practice questions.

0/1
?
Intros
Lessons
  1. Overview of improper integrals
0/8
?
Examples
Lessons
  1. Type 1 integrals with part a
    Evaluate,
    1. 15xdx \int_{1}^{\infty}\frac{5}{x}dx
    2. 01(4x+5)2dx \int_{0}^{\infty}\frac{1}{(4x+5)^2}dx
  2. Type 1 integrals with part b
    Evaluate,
    1. 32x4+x2dx \int_{-\infty}^{-3}2x\sqrt{4+x^2}dx
    2. 0exdx \int_{-\infty}^{0}e^xdx
  3. Type 1 integrals with part c
    Evaluate,
    81+x2dx \int_{-\infty}^{\infty}\frac{8}{1+x^2}dx
    1. Determining convergence and divergence with type 2 integrals
      Evaluate,
      1. 0πsin2xcosxdx \int_{0}^{\pi}\frac{\sin^2x}{\cos x}dx
      2. 0elnx \int_{0}^{e}\ln x dxdx
      3. 2313xdx \int_{2}^{3}\frac{1}{\sqrt{3-x}}dx
    Topic Notes
    ?
    First, we will learn about Type 1 improper integrals. These types of improper integrals have bounds which have positive or negative infinity. Then we will look at Type 2 improper integrals. These improper integrals happen when the function is undefined at a specific place or area within the region of integration. For these integrals, we will have to use limits. If the limit exists and is finite, then the integral can be solved. Otherwise, the integral will be unsolvable.
    Note:
    There are two types of improper integrals:
    1) Type 1
    a) af(x)dx \int_{a}^{\infty}f(x) dx == lim \limt → \infty atf(x)dx \int_{a}^{t}f(x)dx

    b) bf(x)dx=\int_{-\infty}^{b}f(x)dx=lim\limt →-\inftytbf(x)dx\int_{t}^{b}f(x)dx

    c) f(x)dx=af(x)dx+af(x)dx\int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{a}f(x)dx+\int_{a}^{\infty}f(x)dx

    2) Type 2
    a) If ff is continuous on [a,b)[a,b) and discontinuous at bb, then:
    abf(x)dx=\int_{a}^{b} f(x)dx=lim\limt →b b^-atf(x)dx\int_{a}^{t}f(x)dx

    b) If ff is continuous on (a,b](a,b] and discontinuous at aa, then:
    abf(x)dx=\int_{a}^{b} f(x)dx=lim\limt →a+ a^+tbf(x)dx\int_{t}^{b}f(x)dx

    c) If ff has a discontinuity at cc, where a<c<ba<c<b, then:
    abf(x)dx=acf(x)dx+cbf(x)dx\int_{a}^{b} f(x)dx=\int_{a}^{c} f(x)dx+\int_{c}^{b} f(x)dx

    If the limits exist and is finite, then it is convergent. Otherwise, it is divergent.