# Graphing transformations of trigonometric functions

0/4
##### Examples
###### Lessons
1. For each trigonometric function:
(i) Graph the trigonometric function for one period.
(ii) State the vertical displacement, phase shift, period, and amplitude.
(iii) State the domain and the range.
1. $y = 2\sin \frac{\pi }{4}(x + 3) + 1$
2. $y = 3\sec (\frac{\pi }{2}x - \pi ) - 1$
3. $y = - 2\sin (4x + 4\pi ) - 3$
2. For the trigonometric function: $y = - \tan \left( {\;\frac{x}{3} - \frac{\pi }{6}\;} \right)$
i) Graph the trigonometric function for two periods.
ii) State the domain and the range.
###### Free to Join!
StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun - with achievements, customizable avatars, and awards to keep you motivated.
• #### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.
• #### Make Use of Our Learning Aids

###### Practice Accuracy

See how well your practice sessions are going over time.

Stay on track with our daily recommendations.

• #### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.
• #### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.
###### Topic Notes
After learning all the graphs of basic trigonometric functions, in this lesson, we are going to go a little bit further on how the graphs will be transformed as the functions change. The general form for the equation of trig functions is y = f [B(x + c)] + D, where f refers the trig function; A refers to the amplitude/steepness; B represents the period of the graph; C refers to phase shift (left or right) and D represents vertical shift (up or down). We will learn how to graph the trig function for multiple periods; state the vertical displacement, phase shift, period and amplitude; and also find the domain and range of the transformed functions.