Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

Get the most by viewing this topic in your current grade. Pick your course now.

  1. Limit Laws Overview:
    7 Properties of Limit Laws
  1. Evaluating Limits of Functions
    Evaluate the following limits using the property of limits:
    1. limx2x2+4x+3\lim_{x \to 2} x^2+4x+3
    2. limx23(x2+4x+3)2\lim_{x \to 2} 3(x^2+4x+3)^2
    3. limx123x+4x22+x4\lim_{x \to 1} \frac{2-3x+4x^2}{2+x^4}
    4. limx04(3)x\lim_{x \to 0} 4(3)^x
    5. limxπ23(sinx)4\lim_{x \to \frac{\pi}{2}} 3(\sin x)^4
  2. Evaluating Limits with specific limits given
    Given that limx5f(x)=3\lim_{x \to 5} f(x)=-3, limx5g(x)=5\lim_{x \to 5} g(x)=5, limx5h(x)=2\lim_{x \to 5} h(x)=2, use the limit properties to compute the following limits:
    1. limx5[5f(x)2g(x)]\lim_{x \to 5} [5f(x)-2g(x)]
    2. limx5[g(x)f(x)+3h(x)]\lim_{x \to 5} [g(x)f(x)+3h(x)]
    3. limx52g(x)h(x)\lim_{x \to 5} \frac{2g(x)}{h(x)}
    4. limx55[f(x)]3g(x)\lim_{x \to 5} \frac{5[f(x)]^3}{g(x)}
Topic Notes
Here are some properties of limits:

1) limxax=a\lim_{x \to a} x = a
2) limxac=c\lim_{x \to a} c = c
3) limxa[cf(x)]=climxaf(x)\lim_{x \to a} [cf(x)] = c\lim_{x \to a}f(x)
4) limxa[f(x)±g(x)]=limxaf(x)±limxag(x)\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)
5) limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a}f(x) \lim_{x \to a}g(x)
6) limxaf(x)g(x)=limxaf(x)limxag(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}, only if limxag(x)0\lim_{x \to a}g(x) \neq0
7) limxa[f(x)]n=[limxaf(x)]n\lim_{x \to a} [f(x)]^n=[\lim_{x \to a}f(x)]^n

Where c is a constant, limxaf(x)\lim_{x \to a} f(x) and limxag(x)\lim_{x \to a} g(x) exist.

Here is a fact that may be useful to you.
If P(x)P(x) is a polynomial, then
limxaP(x)=P(a)\lim_{x \to a} P(x)=P(a)
Basic Concepts