# Slope and equation of tangent line

## All You Need in One PlaceEverything you need for better marks in primary, GCSE, and A-level classes. | ## Learn with ConfidenceWe’ve mastered the UK’s national curriculum so you can study with confidence. | ## Instant and Unlimited Help24/7 access to the best tips, walkthroughs, and practice questions. |

#### Make math click 🤔 and get better grades! 💯Join for Free

0/3

##### Intros

###### Lessons

__Connecting: Derivative & Slope & Equation of Tangent Line__

*Exercise:*The graph of the quadratic function $f\left( x \right) = \frac{1}{2}{x^2} + 2x - 1$ is shown below.

- Find and interpret $f'\left( x \right)$.
- Find the slope of the tangent line at:

i) $x = - 1$

ii) $x = 2$

iii) $x = - 7$

iv) $x = - 4$

v) $x = - 2$ - Find an equation of the tangent line at:

i) $x = 2$

ii) $x = - 4$

iii) $x = - 2$

0/10

##### Examples

###### Lessons

**Determining Equations of the Tangent Line and Normal Line**

Consider the function: $f(x)=\frac{x}{32}(\sqrt{x}+{^3}\sqrt{x})$**Locating Horizontal Tangent Lines****Locating Tangent Lines Parallel to a Linear Function**

Consider the Cubic function: $f(x)=x^3-3x^2+3x$

i) Find the points on the curve where the tangent lines are parallel to the line $12x-y-9=0$.

ii) Determine the equations of these tangent lines.**Determining Lines Passing Through a Point and Tangent to a Function**

Consider the quadratic function: $f(x)=x^2-x-2$**Locating Lines Simultaneously Tangent to 2 Curves**

Consider the quadratic functions:

$f(x)=x^2$

$g(x)=\frac{1}{4}x^2+3$