- Home
- Higher 2 Maths
- Functions
Function notation (advanced)
- Lesson: 114:57
- Lesson: 210:39
- Lesson: 310:30
Function notation (advanced)
Related Concepts: Transformations of functions: Horizontal translations, Transformations of functions: Vertical translations, Transformations of functions: Horizontal stretches, Transformations of functions: Vertical stretches
Lessons
- 1.Introduction to Function Notation
If f(x)=5x2−x+6 find the followinga)f(♡)b)f(θ)c)f(3)d)f(−1)e)f(3x)f)f(−x)g)f(3x−4)h)3f(x)i)f(x)−3 - 2.Express a Function as f()
If f(x)=x, write the following in terms of the function f.a)x+5b)x+5c)2x−3d)−8xe)−82x−3f)4x5+9−1 - 3.Find the Value of a Function from Its Graph
Find the value of the following from the given graph
a)f(3)b)f(0)c)f(−5)d)f(x)=5,x=?e)f(x)=−1,x=?f)f(x)=0,x=?
Do better in math today
2.
Functions
2.1
Function notation
2.2
Operations with functions
2.3
Adding functions
2.4
Subtracting functions
2.5
Multiplying functions
2.6
Dividing functions
2.7
Composite functions
2.8
Inequalities of combined functions
2.9
Inverse functions
2.10
One to one functions
2.11
Difference quotient: applications of functions