# Transformations of functions: Vertical translations

##### Intros
###### Lessons
1. An Experiment to Study "Vertical Translations"

Sketch and compare: $\left( y \right) = {x^2}$
VS.
$\left( {y - 3} \right) = {x^2}$
VS.
$\left( {y + 2} \right) = {x^2}$
2. Sketch all three quadratic functions on the same set of coordinate axes.
3. Compared to the graph of $y = {x^2}$:
• the graph of $\left( {y - 3} \right) = {x^2}$ is translated "vertically" ________ units _____________.
• the graph of $\left( {y + 2} \right) = {x^2}$ is translated "vertically" ________ units _____________.
##### Examples
###### Lessons
1. Vertical Translations
Given the graph of $y=f(x)$ as shown, sketch:
1. $y = f\left( x \right) - 8$
2. $y = f\left( x \right) + 3$
3. In conclusion:
$\left( y \right) \to \left( {y + 8} \right)$: shift ________ units ______________ $\Rightarrow$ all $y$ coordinates _____________________________.
$\left( y \right) \to \left( {y - 3} \right)$: shift ________ units ______________ $\Rightarrow$ all $y$ coordinates _____________________________.