# Horizontal asymptote

#### Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

#### Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

#### Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

0/1
##### Intros
###### Lessons
1. Introduction to Horizontal Asymptote

• Horizontal Asymptotes define the right-end and left-end behaviors on the graph of a function.

• 3 cases of horizontal asymptotes in a nutshell…
0/19
##### Examples
###### Lessons
1. Algebraic Analysis on Horizontal Asymptotes

Let's take an in-depth look at the reasoning behind each case of horizontal asymptotes:

1. Case 1:

if: degree of numerator < degree of denominator

then: horizontal asymptote: y = 0 (x-axis)

$i.e. f(x) = \frac{ax^{3}+......}{bx^{5}+......}$→ horizontal asymptote: $y = 0$

2. Case 2:

if: degree of numerator = degree of denominator

then: horizontal asymptote: y = $\frac{leading\; coefficient \;of\; numerator}{leading\; coefficient\; of\; denominator}$

$i.e. f(x) = \frac{ax^{5}+......}{bx^{5}+......}$→ horizontal asymptote: $y = \frac{a}{b}$

3. Case 3:

if: degree of numerator > degree of denominator

then: horizontal asymptote: NONE

$i.e. f(x) = \frac{ax^{5}+......}{bx^{3}+......}$$NO\; horizontal\; asymptote$

2. Graphing Rational Functions

Sketch each rational function by determining:

i) vertical asymptote.

ii) horizontal asymptotes

1. $f\left( x \right) = \frac{5}{{2x + 10}}$
2. $g\left( x \right) = \frac{{5{x^2} - 13x + 6}}{{ - 2{x^2} + 3x + 2}}$
3. $h\left( x \right) = \frac{{{x^3}}}{{20x - 100}}$
3. Identifying Characteristics of Rational Functions

Without sketching the graph, determine the following features for each rational function:

i) point of discontinuity

ii) vertical asymptote

iii) horizontal asymptote

iv) slant asymptote

1. $a(x) = \frac{x - 9}{x + 9}$
2. $b(x) = \frac{x^{2}-9}{x^{2}+9}$
3. $c(x) = \frac{x^{2}+9}{x^{2}-9}$
4. $d(x) = \frac{x+9}{x^{2}-9}$
5. $e(x) = \frac{x+3}{x^{2}-9}$
6. $f(x) = \frac{x^{2}+9}{x+9}$
7. $g(x) = \frac{-x-9}{-x^{2}-9}$
8. $h(x) = \frac{-x^{2}-9}{-x^{2}+9}$
9. $i(x) = \frac{x^{2}-9}{x+3}$
10. $j(x) = \frac{x^{3}-9x^{2}}{x^{2}-3x}$
###### Topic Notes

There are 3 cases to consider when determining horizontal asymptotes:

1) Case 1:

if: degree of numerator < degree of denominator

then: horizontal asymptote: y = 0 (x-axis)

$i.e. f(x) = \frac{ax^{3}+......}{bx^{5}+......}$→ horizontal asymptote: $y = 0$

2) Case 2:

if: degree of numerator = degree of denominator

then: horizontal asymptote: y = $\frac{leading\; coefficient \;of\; numerator}{leading\; coefficient\; of\; denominator}$

$i.e. f(x) = \frac{ax^{5}+......}{bx^{5}+......}$→ horizontal asymptote: $y = \frac{a}{b}$

3) Case 3:

if: degree of numerator > degree of denominator

then: horizontal asymptote: NONE

$i.e. f(x) = \frac{ax^{5}+......}{bx^{3}+......}$$NO\; horizontal\; asymptote$