# Graphs of rational functions

## Everything You Need in One PlaceHomework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered. | ## Learn and Practice With EaseOur proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals. | ## Instant and Unlimited HelpOur personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now! |

#### Make math click 🤔 and get better grades! 💯Join for Free

Get the most by viewing this topic in your current grade. __Pick your course now__.

##### Examples

###### Lessons

**Graphing Rational Functions**Sketch each rational function by determining:

i) vertical asymptote.

ii) horizontal asymptotes

**Graphing Rational Functions Incorporating All 3 Kinds of Asymptotes**Sketch the rational function

$f(x) = \frac{2x^{2}-x-6}{x+2}$

by determining:

i) points of discontinuity

ii) vertical asymptotes

iii) horizontal asymptotes

iv) slant asymptote**Identifying Characteristics of Rational Functions**Without sketching the graph, determine the following features for each rational function:

i) point of discontinuity

ii) vertical asymptote

iii) horizontal asymptote

iv) slant asymptote

- $a(x) = \frac{x - 9}{x + 9}$
- $b(x) = \frac{x^{2}-9}{x^{2}+9}$
- $c(x) = \frac{x^{2}+9}{x^{2}-9}$
- $d(x) = \frac{x+9}{x^{2}-9}$
- $e(x) = \frac{x+3}{x^{2}-9}$
- $f(x) = \frac{x^{2}+9}{x+9}$
- $g(x) = \frac{-x-9}{-x^{2}-9}$
- $h(x) = \frac{-x^{2}-9}{-x^{2}+9}$
- $i(x) = \frac{x^{2}-9}{x+3}$
- $j(x) = \frac{x^{3}-9x^{2}}{x^{2}-3x}$