Triple integrals in cylindrical coordinates

All in One Place

Everything you need for JC, LC, and college level maths and science classes.

Learn with Ease

We’ve mastered the national curriculum so that you can revise with confidence.

Instant Help

24/7 access to the best tips, walkthroughs, and practice exercises available.

0/2
?
Intros
Lessons
  1. Triple Integrals in Cylindrical Coordinates Overview:
  2. Triple Integrals in Cylindrical Coordinates
    • Polar Coordinates \to Cylindrical Coordinates
    • All xx's & yy's change to rr's & θ\theta
    • zz stays the same
  3. An Example of Converting to Cylindrical Coordinates
    • All xx's & yy's change to rr's & θ\theta
    • The variable zz stays the same
    • Add an extra rr
    • Integrate
0/4
?
Examples
Lessons
  1. Converting to Cylindrical Coordinates
    Convert the following triple integral to cylindrical coordinates

    2004x22x2+2y24x+y9x2y2dzdydx\large \int_{-2}^{0}\int_{0}^{\sqrt{4 - x^{2}}} \int_{2x^{2} + 2y^{2}-4}^{x+ y} \sqrt{9 - x^{2} - y^{2}}\, dz \,dy\, dx
    1. Convert the following triple integral to cylindrical coordinates

      339y29y23z52zIn(x2+y2)dxdzdy\large \int_{-3}^{3}\int_{-\sqrt{9 - y^{2}}}^{\sqrt{9 - y^{2}}} \int_{3z- 5}^{2} \, zIn(x^{2} + y^{2})\, dx \,dz\, dy
      1. Converting & Integrating
        Evaluate E2dV \, \int\int\int_{E} 2dV \, where E \, E \, is the region bounded by z=x2+y22\, z = x^{2} + y^{2} - 2 \, and z=6x2y2 \, z = 6 - x^{2} - y^{2} .
        1. Evaluate E1dV \, \int\int\int_{E} 1dV \, where E \, E \, is the region bounded by z=4,z=xy3\, z = 4, z = x - y - 3 \, and inside x2+y2=4 \, x^{2} + y^{2} = 4 .
          Topic Notes
          ?
          Notes:

          Recall that when converting from Cartesian Coordinates to Polar Coordinates with double integrals we do the following:

          Df(x,y)dA=θ=αθ=βr=g1(θ)r=g2(θ)f(rcosθ,rsinθ)rdrdθ\int \int_D f(x,y)dA = \int^{\theta=\beta}_{\theta=\alpha} \int^{r=g_2(\theta)}_{r=g_1(\theta)} f(r \cos \theta, r \sin \theta ) r dr d\theta

          With triple integrals, it is very similar. Instead of calling it polar coordinates, we call it cylindrical coordinates.

          Suppose we want to triple integrate f(x,y,z)f(x,y,z) in cylindrical coordinates in the following region of EE.

          αθβ \alpha \leq \theta \leq \beta
          g1(θ)rg2(θ) g_1 (\theta) \leq r \leq g_2 (\theta)
          h1(rcosθ,rsinθ)zh2(rcosθ,rsinθ)h_1 (r \cos \theta, r \sin \theta) \leq z \leq h_2(r \cos \theta, r \sin \theta)

          Then

          Ef(x,y,z)dV=αβg1(θ)g2(θ)h1(rcosθ,rsinθ)h2(rcosθ,rsinθ)f(rcosθ,rsinθ,z)rdzdrdθ \int \int \int_E f(x,y,z) dV = \int^{\beta}_{\alpha} \int^{g_2(\theta )}_{g_1(\theta )} \int^{h_2 (r \cos \theta, r \sin \theta)}_{h_1 (r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) rdzdrd\theta