# Slope and equation of tangent line

##### Intros

###### Lessons

__Connecting: Derivative & Slope & Equation of Tangent Line__

*Exercise:*The graph of the quadratic function $f\left( x \right) = \frac{1}{2}{x^2} + 2x - 1$ is shown below.

- Find and interpret $f'\left( x \right)$.
- Find the slope of the tangent line at:

i) $x = - 1$

ii) $x = 2$

iii) $x = - 7$

iv) $x = - 4$

v) $x = - 2$ - Find an equation of the tangent line at:

i) $x = 2$

ii) $x = - 4$

iii) $x = - 2$

##### Examples

###### Lessons

**Determining Equations of the Tangent Line and Normal Line**

Consider the function: $f(x)=\frac{x}{32}(\sqrt{x}+{^3}\sqrt{x})$**Locating Horizontal Tangent Lines****Locating Tangent Lines Parallel to a Linear Function**

Consider the Cubic function: $f(x)=x^3-3x^2+3x$

i) Find the points on the curve where the tangent lines are parallel to the line $12x-y-9=0$.

ii) Determine the equations of these tangent lines.**Determining Lines Passing Through a Point and Tangent to a Function**

Consider the quadratic function: $f(x)=x^2-x-2$**Locating Lines Simultaneously Tangent to 2 Curves**

Consider the quadratic functions:

$f(x)=x^2$

$g(x)=\frac{1}{4}x^2+3$

###### Free to Join!

StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun — with achievements, customizable avatars, and awards to keep you motivated.

#### Easily See Your Progress

We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.#### Make Use of Our Learning Aids

#### Earn Achievements as You Learn

Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.#### Create and Customize Your Avatar

Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

###### Topic Notes

The derivative of a function is interpreted as the slope of the tangent line to the curve of the function at a certain given point. In this section, we will explore the meaning of a derivative of a function, as well as learning how to find the slope-point form of the equation of a tangent line, as well as normal lines, to a curve at multiple given points.

•

•

The

**of a line with slope m through a point $(x_1,y_1): m=\frac{y-y_1}{x-x_1}$***Point-Slope Form*•

__Tangent Line & Normal Line__The

**normal line**to a curve at a particular point is the line through that point and*perpendicular*to the**tangent line**.2

videos

remaining today

remaining today

5

practice questions

remaining today

remaining today