Absolute & conditional convergence

Get the most by viewing this topic in your current grade. Pick your course now.

?
Intros
Lessons
  1. Absolute & Conditional Convergence Overview
?
Examples
Lessons
  1. Questions based on Absolute & Conditional Convergence
    Determine if the series is absolutely convergent, conditionally convergent, or divergent
    1. n=2(1)nn1 \sum_{n=2}^{\infty}\frac{(-1)^n}{n-1}
    2. n=1(1)nn2 \sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}
    3. n=22+cosnn \sum_{n=2}^{\infty}\frac{2+cosn}{n}
    4. n=4(n2+2)(1)3n+1(n4+1)1n1 \sum_{n=4}^{\infty}\frac{(n^2+2)(-1)^{3n+1}}{(n^4+1)1^{n-1}}
  2. Advanced Question
    Determine if the series n=1(1)n2sin2((2n+1)π2)n3 \sum_{n=1}^{\infty}\frac{(-1)^{n-2}sin^2(\frac{(2n+1)\pi}{2})}{n^3} is absolutely convergent, conditionally convergent, or divergent.