Still Confused?

Try reviewing these fundamentals first

- Home
- Math 30-2 (Alberta)
- Applications of Exponential and Logarithmic Functions

Still Confused?

Try reviewing these fundamentals first

Still Confused?

Try reviewing these fundamentals first

Nope, got it.

That's the last lesson

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 1a4:34
- Lesson: 1b3:06
- Lesson: 1c3:50
- Lesson: 1d3:23
- Lesson: 1e3:21
- Lesson: 26:41

Now that we understand the concepts behind exponential growth and decay, let's utilize them and solve real-life problems! One of the many areas where exponential growth comes in handy is Finance. In this section, we will learn how compound interest helps us grow our deposits in our investment and/or bank accounts.

Related Concepts: Derivative of inverse trigonometric functions, Derivative of logarithmic functions

exponential growth/decay: ${ A_f = A_i (1+\frac{r}{n})^{nt}}$

${A_f}$: final amount

${A_i}$: initial amount

${r}$ : Annual interest rate

${t}$: total time given in**years **

${n}$ : number of times compounded in a year, if

${A_f}$: final amount

${A_i}$: initial amount

${r}$ : Annual interest rate

${t}$: total time given in

${n}$ : number of times compounded in a year, if

Compound daily: |
n = 365 |

Compound monthly: |
n = 12 |

Compound quarterly: |
n = 4 |

Compound semi-annually: |
n = 2 |

Compound annually: |
n = 1 |

- 1.Bianca deposits $1,000 in a savings account with an annual interest rate of

12%. How much money will she have in 20 years, if the interest is compounded:a)dailyb)monthlyc)quarterlyd)semi-annuallye)annually - 2.A $1000 investment, compounded quarterly, doubles in value over a period

of 8 years. Find the interest rate per annum.

6.

Applications of Exponential and Logarithmic Functions

6.1

Exponential growth and decay by a factor

6.2

Exponential decay: Half-life

6.3

Exponential growth and decay by percentage

6.4

Finance: Compound interest

6.5

Continuous growth and decay

6.6

Logarithmic scale: Richter scale (earthquake)

6.7

Logarithmic scale: pH scale

6.8

Logarithmic scale: dB scale

6.9

Finance: Future value and present value

We have plenty of practice questions in Math 30-2 (Alberta) for you to master.

Get Started Now6.1

Exponential growth and decay by a factor

6.2

Exponential decay: Half-life

6.3

Exponential growth and decay by percentage

6.4

Finance: Compound interest

6.5

Continuous growth and decay

6.6

Logarithmic scale: Richter scale (earthquake)

6.7

Logarithmic scale: pH scale

6.8

Logarithmic scale: dB scale

6.9

Finance: Future value and present value