Still Confused?

Try reviewing these fundamentals first.

- Home
- AU Year 12 Maths
- Radicals

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Intro Lesson16:11
- Lesson: 1a0:22
- Lesson: 1b1:00
- Lesson: 1c2:56
- Lesson: 1d0:28
- Lesson: 1e3:34
- Lesson: 2a6:43
- Lesson: 2b4:28
- Lesson: 2c5:42
- Lesson: 2d2:48
- Lesson: 2e5:58
- Lesson: 2f2:41
- Lesson: 318:21
- Lesson: 4a0:55
- Lesson: 4b0:37
- Lesson: 4c3:29
- Lesson: 4d1:57

Related concepts: Basic radical functions, Transformations of radical functions, Square root of a function, Solving radical equations,

$\cdot$ even root: ${^{even}}\sqrt{positive}=defined$ i.e. $\sqrt{64}=8$

${^{even}}\sqrt{negative}=undefined$ i.e. $\sqrt{-64}=undefined$

$\cdot$ odd root: ${^{odd}}\sqrt{positive\;or\;negative}=defined$ i.e. ${^3}\sqrt{64}=4$

i.e. ${^3}\sqrt{-64}=-4$

${^{even}}\sqrt{negative}=undefined$ i.e. $\sqrt{-64}=undefined$

$\cdot$ odd root: ${^{odd}}\sqrt{positive\;or\;negative}=defined$ i.e. ${^3}\sqrt{64}=4$

i.e. ${^3}\sqrt{-64}=-4$

- Introduction$\cdot$What is a "radical"?

$\cdot$square root VS. cubic root

$\cdot$common squares to memorize

- 1.
**Evaluating Radicals Algebraically**

Without using a calculator, evaluate:a)$\sqrt { - 9}$b)${^3}\sqrt{{ - 27}}$c)${^6}\sqrt{{\frac{1}{{64}}}}$d)${^4}\sqrt{{ - 81}}$e)$9{^3}\sqrt{{64}}$ - 2.
**Evaluating Radicals Using a Calculator**

Use a calculator to determine:a)${\;}{^6}\sqrt{{729}}$b)${^5}\sqrt{{-1024}}$c)${^5}\sqrt{{\frac{{32}}{{243}}}}$d)${^6}\sqrt{{600}}$e)${^5}\sqrt{{0.5}}$f)$\frac{3}{4}{^4}\sqrt{{36}}$ - 3.
**Radical Rules**

Combining radicals: Do's and Don'ts - 4.Determine whether the following statements are true or false.a)$\sqrt 2 \times \sqrt 3 = \sqrt 6$b)$\frac{{\sqrt {20} }}{{\sqrt {10} }} = \sqrt 2$c)$\sqrt {15} \cdot\sqrt {30} \cdot\sqrt 2 = 900$d)${^3}\sqrt{5} \cdot {^3}\sqrt{{25}} = 5$

We have over 1040 practice questions in AU Year 12 Maths for you to master.

Get Started Now