Square and square roots

Practice Now

Get the most by viewing this topic in your current grade. Pick your course now.

Introduction
Lessons
    Examples
    Lessons
    1. Understanding the negative square roots of the following
      1. 225 \sqrt{225}           225 -\sqrt{225}           225 \sqrt{-225}
    2. Find the square roots
      1. 64 \sqrt{64}
      2. 676-\sqrt{676}
      3. 81 \sqrt{-81}
    Practice
    Free to Join!
    StudyPug is a learning help platform covering math and science from grade 4 all the way to second year university. Our video tutorials, unlimited practice problems, and step-by-step explanations provide you or your child with all the help you need to master concepts. On top of that, it's fun - with achievements, customizable avatars, and awards to keep you motivated.
    • Easily See Your Progress

      We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.
    • Make Use of Our Learning Aids

      Last Viewed
      Practice Accuracy
      Suggested Tasks

      Get quick access to the topic you're currently learning.

      See how well your practice sessions are going over time.

      Stay on track with our daily recommendations.

    • Earn Achievements as You Learn

      Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.
    • Create and Customize Your Avatar

      Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.
    Topic Notes
    To square is to raise the number to the second power. In other words, to square is to multiply the number by itself. Square root is the inverse operation of squaring. To square root is to find the two identical factors of a number.

    What is a square root?

    To explain square roots, let's take a step back and remember what it means to square a number. To square is to raise the number to the second power. Square roots are the opposite of that, and is actually the inverse operation of squaring. To square root is to find the two identical factors of a number.

    How to find the square root of a number

    For numbers that are perfect squares, you can find whole numbers as answers. However, for numbers that aren't perfect squares, you'll have to use a method that involves estimation (or you can use a table of square and square roots).

    Finding square root of perfect square numbers

    Let's first take a look at this question here:

    square root of 64
    root 64

    What is the square root of 64? If you have a calculator, you can always just punch in it and get the answer. But do you know how to find the square root of a number without a calculator?

    Now, if you do remember your perfect squared numbers, the root of 64 is just eight. Eight times eight gives you 64. But let's say you can't freely recall perfect numbers. How would do we do this from scratch?

    First, you will have to find all the prime factors of 64. So, let's go ahead and do that:

    how to find square root
    prime factors of root 64

    Imagine that the question now becomes 2x2x2x2x2x2— 2 is multiplied 6 times here. So we've just determined that 64 is just a square root of six 2s, all multiplied together.

    how to find square root
    radical sign

    Before we move on, we must remember that the radical sign actually means "the square root". The square root symbol should really be written with a tiny little two here:

    how to find square root
    square root

    Since it's a square root, you can pick a pair of identical numbers to work with and bring them out from under the radical. In this case, we'll take out a 2 from the first pair of 2s, another 2 from the second pair, and another 2 from the last pair. It should look something like this:

    square root symbol
    taking out pairs

    Now if you multiply the 2s with one another, what do you get? You'll find that you get 8, which is exactly the same as what you would have remember if you knew your perfect squares. However, this is the correct way to find the square root of a number without memorization.

    Finding square root of numbers that aren't perfect squares

    The basic method to find the square root of a number that is not a perfect square is as follows:

    1. Estimate: Pick a number that if you square comes close to, but is less than, the square root of the number you're trying to find.

    2. Divide: Divide the number that you are finding the squared root for with the number you picked in step 1

    3. Average: Take the average of the number you got in step 2 and the square root

    4. Repeat: Repeat steps 2 and 3 until the number is accurate enough for you

    Now you've learned how to find the square root for numbers that both are and are not perfect squares. Continue on with our lessons to learn how to deal with different radical numbers examples.

    To square:
    Raise the number to the second power
    Ex: 52 {5^2} = 5×5=25 5\times 5 = 25
    82 {8^2} = 8×8=648\times 8 = 64

    To square root:
    Finding the two identical factors
    Ex: 16 \sqrt{16} = 4×4 \sqrt{4\times 4} = 4
    49 \sqrt{49} = 7×7 \sqrt{7\times 7} = 7

    Perfect squares numbers:
    02 {0^2} = 0
    12 {1^2} = 1
    22 {2^2} = 4
    32 {3^2} = 9
    42 {4^2} = 16
    52 {5^2} = 25
    62 {6^2} = 36
    72 {7^2} = 49
    82 {8^2} = 64
    92 {9^2} = 81
    & so on... {100, 121, 144, 169, 196...}