Still Confused?

Try reviewing these fundamentals first.

Algebra

Squares and square rootsAlgebra

Estimating square rootsBasic Math

Prime factorizationAlgebra

Square and square rootsStill Confused?

Try reviewing these fundamentals first.

Algebra

Squares and square rootsAlgebra

Estimating square rootsBasic Math

Prime factorizationAlgebra

Square and square rootsStill Confused?

Try reviewing these fundamentals first.

Algebra

Squares and square rootsAlgebra

Estimating square rootsBasic Math

Prime factorizationAlgebra

Square and square rootsNope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 1a1:37
- Lesson: 2a1:56
- Lesson: 2b1:00
- Lesson: 2c1:11

Whenever we see "roots", let it be cubic roots or square roots, we know for sure that we will need to do prime factorization to find out the prime factors of the numbers. In this section, we use factors and multiples to find perfect cube whole numbers and cubic roots.

Basic concepts: Squares and square roots, Estimating square roots, Prime factorization, Square and square roots,

Related concepts: Conversions involve squares and cubic, Operations with radicals, Conversion between entire radicals and mixed radicals,

To cube: Raise the number to the third power

Ex: ${3^3}$ $= 3\times 3\times 3 = 27$

${6^3}$ = $6\times 6\times 6 = 216$

To cube root: Finding the three identical factors

Ex: ${^3}\sqrt{64}$ = ${^3}\sqrt{4\times 4\times 4}$ = 4

${^3}\sqrt{125}$ = ${^3}\sqrt{5\times 5\times 5}$ = 5

Perfect Cubes: ${0^3}$= 0

${1^3}$ = 1

${2^3}$ = 8

${3^3}$ = 27

${4^3}$ = 64

${5^3}$ = 125

${6^3}$ = 216

${7^3}$ = 343

${8^3}$ = 512

${9^3}$ = 729

${10^3}$ = 1000

Ex: ${3^3}$ $= 3\times 3\times 3 = 27$

${6^3}$ = $6\times 6\times 6 = 216$

To cube root: Finding the three identical factors

Ex: ${^3}\sqrt{64}$ = ${^3}\sqrt{4\times 4\times 4}$ = 4

${^3}\sqrt{125}$ = ${^3}\sqrt{5\times 5\times 5}$ = 5

Perfect Cubes: ${0^3}$= 0

${1^3}$ = 1

${2^3}$ = 8

${3^3}$ = 27

${4^3}$ = 64

${5^3}$ = 125

${6^3}$ = 216

${7^3}$ = 343

${8^3}$ = 512

${9^3}$ = 729

${10^3}$ = 1000

- 1.Understanding the negative cube roots of the followinga)${^3}\sqrt{27}$ - ${^3}\sqrt{27}$${^3}\sqrt{-27}$
- 2.Find the cube rootsa)${^3}\sqrt{-4913}$b)${^3}\sqrt{1331}$c)$-{^3}\sqrt{2197}$

10.

Radical Functions and Expressions

10.1

Squares and Square Roots

10.2

Cubic and Cube Roots

10.3

Evaluating and simplifying radicals

10.4

Multiplying and dividing radicals

10.5

Adding and subtracting radicals

10.6

Rationalize the denominator

10.7

Basic radical functions

10.8

Transformations of radical functions

10.9

Solving radical equations

10.10

Operations with radicals

10.11

Conversion between entire radicals and mixed radicals

10.12

Adding and subtracting radicals

10.13

Multiplying radicals (advanced)

We have over 1060 practice questions in Algebra 2 for you to master.

Get Started Now10.1

Squares and Square Roots

10.2

Cubic and Cube Roots

10.3

Evaluating and simplifying radicals

10.4

Multiplying and dividing radicals

10.5

Adding and subtracting radicals

10.6

Rationalize the denominator

10.10

Operations with radicals

10.11

Conversion between entire radicals and mixed radicals

10.12

Adding and subtracting radicals

10.13

Multiplying radicals (advanced)