Still Confused?

Try reviewing these fundamentals first.

- Home
- UK Year 12 Maths
- Functions

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 114:57
- Lesson: 210:39
- Lesson: 310:30

Related concepts: Transformations of functions: Horizontal translations, Transformations of functions: Vertical translations, Transformations of functions: Horizontal stretches, Transformations of functions: Vertical stretches,

- 1.
**Introduction to Function Notation**

If $f(x) = 5x^2-x+6$ find the followinga)${f(\heartsuit)}$b)${f(\theta)}$c)${f(3)}$d)${f(-1)}$e)${f(3x)}$f)${f(-x)}$g)${f(3x-4)}$h)${3f(x)}$i)${f(x)-3}$ - 2.
**Express a Function as $f($$)$**

If ${f(x) = \sqrt{x},}$ write the following in terms of the function ${f.}$a)${\sqrt{x}+5}$b)${\sqrt{x+5}}$c)${\sqrt{2x-3}}$d)${-8\sqrt{x}}$e)${-8\sqrt{2x-3}}$f)$4\sqrt{x^{5}+9}-1$ - 3.
**Find the Value of a Function from Its Graph**

Find the value of the following from the given graph

a)${f(3)}$b)${f(0)}$c)${f(-5)}$d)${f(x)=5,x=?}$e)${f(x)=-1,x=?}$f)${f(x)=0,x=?}$

15.

Functions

15.1

Function notation

15.2

Operations with functions

15.3

Adding functions

15.4

Subtracting functions

15.5

Multiplying functions

15.6

Dividing functions

15.7

Composite functions

15.8

Inequalities of combined functions

15.9

Inverse functions

15.10

One to one functions

15.11

Difference quotient: applications of functions

We have over 1620 practice questions in UK Year 12 Maths for you to master.

Get Started Now