Law of sines - Trigonometric Ratios and Angle Measures

Law of sines

In this section, we will learn about the Law of Sines, also known as the Sines Rule. The Law of Sines is a formula that models the relationship between the sides and the angles of any triangle, be it a right-angled triangle, an obtuse triangle, or an acute triangle. In order to use the Law of Sines, we need to satisfy the "one pair, one additional information" condition (i.e. Angle-Angle-Side abbreviated as AAS, and Angle-Side-Angle abbreviated as ASA). We will also explore the concept of the Ambiguous Case of the Law of Sines.


Law of Sine
For any \triangle ABC,

asin(A)\frac{a}{\sin(A)} =bsin(B)=\frac{b}{\sin(B)} =csin(C)=\frac{c}{\sin(C)}
sin(A)a\frac{\sin(A)}{a} =sin(B)b=\frac{\sin(B)}{b} =sin(C)c=\frac{\sin(C)}{c}

Use the Law of Sine when given a pair!

Ambiguous case
Ambiguous case of the Law of Sine arises when given SSA (side-side-angle)

Step 1) Use the given angle to find the height of the triangle: h=bsin(A)h=b \sin (A)

Step 2) Check if,
Side  aSide\;a < hh,
then no triangles
Side  a=hSide\;a=h,
then 1 triangle
Side  aSide\;a > hh,
then 1 triangle
hh < Side  aSide\;a < Side  bSide\;b,
then 2 triangles

Step 3) Solve the triangle(s)!
  • 1.
    Given the following triangle ABC\triangle ABC,
    Using law of sines to find angles and side lengths of triangles
Teacher pug

Law of sines

Don't just watch, practice makes perfect.

We have over 250 practice questions in Trigonometry for you to master.