Inverse reciprocal trigonometric function: finding the exact value  Inverse Trigonometric Functions
Inverse reciprocal trigonometric function: finding the exact value
Lessons
Notes:
$y = \csc x\;$ [$\frac{\pi}{2}$, 0) $\cup$ (0, $\frac{\pi}{2}$]
$y = \sec x\;$ [0, $\frac{\pi}{2}$) $\cup$ ($\frac{\pi}{2}, \pi$]
$y = \cot x\;$ (0, $\pi$)
$y = \csc^{1} x\;$ ($\infty$, 1] $\cup$ [1, $\infty$)
$y = \sec^{1} x\;$ ($\infty$, 1] $\cup$ [1, $\infty$)
$y = \cot^{1} x\;$ ($\infty, \infty$)

2.
Application of the Cancellation Laws
Solve the following inverse trigonometric functions:

3.
Solving Expressions With One Inverse Trigonometry
Solve the following inverse trigonometric functions:

4.
Evaluating Expressions With a Combination of Inverse and NonInverse Trigonometry
Solve the following inverse trigonometric functions: