Still Confused?

Try reviewing these fundamentals first.

- Home
- Precalculus
- Systems of Equations

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 14:11
- Lesson: 24:35
- Lesson: 35:50

Basic concepts: Solving systems of linear equations by substitution,

Related concepts: Solving 3 variable systems of equations by elimination, Solving 3 variable systems of equations with no or infinite solutions,

- 1.
**Solving Three Variable Systems of Equations – (Easy)**Solve the following system of equations by substitution:

$2x + 3y + 4z = 0$

$2y + 3z = 23$

$z = 5$

- 2.
**Solving Three Variable Systems of Equations – (Medium)**Solve the following system of equations by substitution:

$3x - 5y + z = 0$

$x - 2y - z = 0$

$z = -2$

- 3.
**Solving Three Variable Systems of Equations – (Hard)**Solve the following system of equations by substitution:

$15x + 7y - 6z = -9$

$5x - 3y + 6z = 13$

$z = 4$

8.

Systems of Equations

8.1

Determining number of solutions to linear equations

8.2

Solving linear systems by graphing

8.3

Using substitution method to solve systems of equations

8.4

Using elimination method to solve systems of equations

8.5

Solving 3 variable systems of equations by substitution

8.6

Solving 3 variable systems of equations by elimination

8.7

Solving 3 variable systems of equations with no or infinite solutions

8.8

Word problems relating 3 variable systems of equations