l'Hospital's rule

All You Need in One Place

Everything you need for Year 6 maths and science through to Year 13 and beyond.

Learn with Confidence

We’ve mastered the national curriculum to help you secure merit and excellence marks.

Unlimited Help

The best tips, tricks, walkthroughs, and practice questions available.

0/1
?
Intros
Lessons
  1. Evaluating the limit of the form:
    lim\limx →c c f(x)g(x)\frac{f(x)}{g(x)}
0/2
?
Examples
Lessons
  1. Evaluating the limit.
    Find:
    1. lim\limx →1 1 lnxx1\frac{\ln x}{x-1}
    2. lim\limx → \infty lnxx1\frac{\ln x}{x-1}
Topic Notes
?
Remember that one tricky Limits section that required intense algebraic manipulation to avoid getting 0/0 or infinity/infinity limits? We will now revisit it again, but with the knowledge of derivatives. In this section, we will learn how derivatives enable us to efficiently evaluate the limits of a function using the "L'Hospital's rule".
Note *l'Hôpital's Rule applies to 2 types of indeterminate forms:

type 00\frac{0}{0} (that is, lim\limx →c c f(x)=0f(x)=0 and lim\limx →c cg(x)=0g(x)=0)
or
type \frac{\infty}{\infty} (that is, lim\limx →c c f(x)=±f(x)=\pm \infty and lim\limx →c cg(x)=±g(x)=\pm \infty)

Then according to l'Hôpital's Rule: lim\limx →c c f(x)g(x)=\frac{f(x)}{g(x)}= lim\limx →c c f(x)g(x)\frac{f'(x)}{g'(x)}