Calculus for vector functions

All in One Place

Everything you need for JC, LC, and college level maths and science classes.

Learn with Ease

We’ve mastered the national curriculum so that you can revise with confidence.

Instant Help

24/7 access to the best tips, walkthroughs, and practice exercises available.

0/3
?
Intros
Lessons
  1. Calculus For Vector Functions Overview:
  2. Limits of Vector Functions
    • Apply limits to all components
    • Example of Limits
  3. Derivative of Vector Functions
    • Apply derivative to all components
    • Example of Derivatives
  4. Integral of Vector Functions
    • Apply integral to all components
    • Example of Definite Integral
    • Example of Indefinite Integral
0/6
?
Examples
Lessons
  1. Finding Limits of Vector Functions
    Compute the following limit:

    limt3<e3t,t39t2,log3t> \lim\limits_{t \to 3} \lt e^{3-t}, \frac{t-3}{9-t^2}, log_3t \gt

    1. Compute the following limit:

      limt(1ti+e2tjt2+1t22t+1k) \lim\limits_{t \to \infty} ( \frac{1}{t} \vec{i} + e^{-2t}\vec{j} \frac{t^2 + 1}{t^2 - 2t + 1} \vec{k} )

      1. Finding Derivative of Vector Functions
        Compute the derivative of the following vector function:

        r(t)=<t211+t2,sin2t,cos2t> r(t) = \lt \frac{t^2 - 1}{1 + t^2}, \sin2t, \cos^2t \gt

        1. Compute the derivative of the following vector function:

          r(t)=<ln(sint),et2+te,(t+1)3t2> r(t) = \lt ln( \sin t), e^{t^2} + t^e, (t+1)^3 t^2 \gt

          1. Finding Integrals of Vector Functions
            Evaluate the integral of 01r(t)dt\int^1_0 r(t)dt , where:

            r(t)=<3,12e2t,cost>r(t) = \lt 3, \frac{1}{2} e^{-2t}, \cos t \gt

            1. Evaluate the integral of r(t)dt\int r(t)dt, where:

              r(t)=1ti+tetj+2t2t22t+1kr(t) = \frac{1}{t}\vec{i} + te^t \vec{j} + \frac{2t-2}{t^2-2t+1} \vec{k}

              Topic Notes
              ?
              Notes:

              Now that we know about vector functions, let's apply calculus to these functions!

              Limits with Vector Functions

              Limits of a vector function works in this way:

              limtar(t)=limta<f(t),g(t),h(t)>\lim\limits_{t \to a} r(t) = \lim\limits_{t \to a} \lt f(t), g(t), h(t) \gt
              =<limtaf(t),limtag(t),limtah(t)> = \lt \lim\limits_{t \to a}f(t), \lim\limits_{t \to a}g(t), \lim\limits_{t \to a}h(t) \gt
              =limtaf(t)i+limtag(t)j+limtah(t)k= \lim\limits_{t \to a}f(t)\vec{i} + \lim\limits_{t \to a}g(t)\vec{j} + \lim\limits_{t \to a}h(t)\vec{k}


              Derivatives with Vector Functions

              Derivatives of a vector function are done in the following way:

              r(t)=<f(t),g(t),h(t)> r' (t) = \lt f'(t), g'(t), h'(t) \gt
              =f(t)i+g(t)j+h(t)k=f'(t) \vec{i} + g'(t)\vec{j} + h'(t)\vec{k}


              Integrals with Vector Functions

              Indefinite integrals of vector functions are done in this way:

              r(t)dt=<f(t)dt,g(t)dt,h(t)dt>+C \int r(t)dt = \lt \int f(t)dt, \int g(t)dt, \int h(t)dt \gt + C
              =f(t)dti+g(t)dtj+h(t)dtk+C = \int f(t) dt \vec{i} + \int g(t)dt\vec{j} + \int h(t)dt\vec{k} + C

              Definite integrals of vector functions work like this:

              abr(t)dt=<abf(t)dt,abg(t)dt,abh(t)dt>+C \int^b_a r(t)dt = \lt \int^b_a f(t)dt, \int^b_a g(t)dt, \int^b_a h(t)dt \gt + C
              =abf(t)dti+abg(t)dtj+abh(t)dtk+C = \int^b_a f(t) dt \vec{i} + \int^b_a g(t)dt\vec{j} + \int^b_a h(t)dt\vec{k} + C