- Home
- Calculus 3
- Multiple Integrals
Triple integrals in cylindrical coordinates
- Intro Lesson: a5:00
- Intro Lesson: b13:43
- Lesson: 112:47
- Lesson: 211:24
- Lesson: 320:08
- Lesson: 417:19
Triple integrals in cylindrical coordinates
Lessons
Notes:
Recall that when converting from Cartesian Coordinates to Polar Coordinates with double integrals we do the following:
∫∫Df(x,y)dA=∫θ=αθ=β∫r=g1(θ)r=g2(θ)f(rcosθ,rsinθ)rdrdθ
With triple integrals, it is very similar. Instead of calling it polar coordinates, we call it cylindrical coordinates.
Suppose we want to triple integrate f(x,y,z) in cylindrical coordinates in the following region of E.
α≤θ≤β
g1(θ)≤r≤g2(θ)
h1(rcosθ,rsinθ)≤z≤h2(rcosθ,rsinθ)
Then
∫∫∫Ef(x,y,z)dV=∫αβ∫g1(θ)g2(θ)∫h1(rcosθ,rsinθ)h2(rcosθ,rsinθ)f(rcosθ,rsinθ,z)rdzdrdθ
- IntroductionTriple Integrals in Cylindrical Coordinates Overview:a)Triple Integrals in Cylindrical Coordinates
- Polar Coordinates → Cylindrical Coordinates
- All x's & y's change to r's & θ
- z stays the same
b)An Example of Converting to Cylindrical Coordinates- All x's & y's change to r's & θ
- The variable z stays the same
- Add an extra r
- Integrate
- 1.Converting to Cylindrical Coordinates
Convert the following triple integral to cylindrical coordinates∫−20∫04−x2∫2x2+2y2−4x+y9−x2−y2dzdydx - 2.Convert the following triple integral to cylindrical coordinates
∫−33∫−9−y29−y2∫3z−52zIn(x2+y2)dxdzdy - 3.Converting & Integrating
Evaluate ∫∫∫E2dV where E is the region bounded by z=x2+y2−2 and z=6−x2−y2. - 4.Evaluate ∫∫∫E1dV where E is the region bounded by z=4,z=x−y−3 and inside x2+y2=4.