Gradient vectors

Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

0/3
?
Intros
Lessons
  1. Gradient Vectors Overview:
    • Gradient vector = f\nabla f
    • Direction with the greatest increase of ff
    • Components are partial derivatives <fx,fy,fz>\to \lt f_x,f_y, f_z\gt
    • Gradient vector at a point =f(x0,y0,z0)=\nabla f(x_0, y_0, z_0)
    • An Example
  2. Finding the Tangent Plane with Gradient
    • Can use Gradient to find tangent planes
    • Recall equation of a plane
    • Gradient = normal vector orthogonal to tangent plane
    • An Example
  3. Finding the Normal Line with Gradient
    • Recall vector equations
    • Gradient = direction of vector
    • r(t)=<x0,y0,z0>+tf(x0,y0,z0)r(t)= \lt x_0, y_0, z_0\gt+ t \nabla f(x_0, y_0, z_0)
    • An example
0/0
?
Examples
Topic Notes
?
Notes:

Gradient Vector

The gradient vector (denoted as f\nabla f) is a vector where all the components are partial derivatives of the function in respect to each variable. Also known as the direction with the greatest increase of ff

For example, consider the function f(x,y,z)f(x,y,z). Then,

f=<fx,fy,fz>\nabla f = \lt f_x, f_y, f_z\gt

If you want to find the gradient of a specific point (x0,y0,z0)(x_0, y_0, z_0), then

f(x0,y0,z0)=<fx(x0,y0,z0),fy(x0,y0,z0),fz(x0,y0,z0)> \nabla f(x_0, y_0, z_0)= \lt f_x(x_0, y_0, z_0),f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0)\gt


Finding the Tangent Plane with Gradient

Gradients are useful for finding the tangent plane.

Recall that the equation of a plane is:

a(xx0)+b(yy0)+c(zz0)=0 a(x-x_0)+b(y-y_0)+c(z-z_0)=0

The gradient vector is actually the normal vector that is orthogonal to the tangent plane at (x0,y0,z0)(x_0, y_0, z_0). So that means:

a=fx(x0,y0,z0)a=f_x(x_0, y_0, z_0)
b=fy(x0,y0,z0)b=f_y(x_0, y_0, z_0)
c=fz(x0,y0,z0)c=f_z(x_0, y_0, z_0)


Finding the Normal Line with Gradient

There are times in which instead of finding the normal vector, we want the normal line. Recall that the formula for a vector equation is:

r(t)=<x0,y0,z0>+t<a,b,c>r(t)= \lt x_0, y_0, z_0\gt+ t\lt a,b,c\gt

Since the gradient is the direction of the vector, and we already have an initial point (x0,y0,z0)(x_0, y_0, z_0), then the normal line is:

r(t)=<x0,y0,z0>+tf(x0,y0,z0)r(t)= \lt x_0, y_0, z_0\gt + t \nabla f(x_0, y_0, z_0)