Calculus for vector functions

Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

0/3
?
Intros
Lessons
  1. Calculus For Vector Functions Overview:
  2. Limits of Vector Functions
    • Apply limits to all components
    • Example of Limits
  3. Derivative of Vector Functions
    • Apply derivative to all components
    • Example of Derivatives
  4. Integral of Vector Functions
    • Apply integral to all components
    • Example of Definite Integral
    • Example of Indefinite Integral
0/6
?
Examples
Lessons
  1. Finding Limits of Vector Functions
    Compute the following limit:

    limt3<e3t,t39t2,log3t> \lim\limits_{t \to 3} \lt e^{3-t}, \frac{t-3}{9-t^2}, log_3t \gt

    1. Compute the following limit:

      limt(1ti+e2tjt2+1t22t+1k) \lim\limits_{t \to \infty} ( \frac{1}{t} \vec{i} + e^{-2t}\vec{j} \frac{t^2 + 1}{t^2 - 2t + 1} \vec{k} )

      1. Finding Derivative of Vector Functions
        Compute the derivative of the following vector function:

        r(t)=<t211+t2,sin2t,cos2t> r(t) = \lt \frac{t^2 - 1}{1 + t^2}, \sin2t, \cos^2t \gt

        1. Compute the derivative of the following vector function:

          r(t)=<ln(sint),et2+te,(t+1)3t2> r(t) = \lt ln( \sin t), e^{t^2} + t^e, (t+1)^3 t^2 \gt

          1. Finding Integrals of Vector Functions
            Evaluate the integral of 01r(t)dt\int^1_0 r(t)dt , where:

            r(t)=<3,12e2t,cost>r(t) = \lt 3, \frac{1}{2} e^{-2t}, \cos t \gt

            1. Evaluate the integral of r(t)dt\int r(t)dt, where:

              r(t)=1ti+tetj+2t2t22t+1kr(t) = \frac{1}{t}\vec{i} + te^t \vec{j} + \frac{2t-2}{t^2-2t+1} \vec{k}

              Topic Notes
              ?
              Notes:

              Now that we know about vector functions, let's apply calculus to these functions!

              Limits with Vector Functions

              Limits of a vector function works in this way:

              limtar(t)=limta<f(t),g(t),h(t)>\lim\limits_{t \to a} r(t) = \lim\limits_{t \to a} \lt f(t), g(t), h(t) \gt
              =<limtaf(t),limtag(t),limtah(t)> = \lt \lim\limits_{t \to a}f(t), \lim\limits_{t \to a}g(t), \lim\limits_{t \to a}h(t) \gt
              =limtaf(t)i+limtag(t)j+limtah(t)k= \lim\limits_{t \to a}f(t)\vec{i} + \lim\limits_{t \to a}g(t)\vec{j} + \lim\limits_{t \to a}h(t)\vec{k}


              Derivatives with Vector Functions

              Derivatives of a vector function are done in the following way:

              r(t)=<f(t),g(t),h(t)> r' (t) = \lt f'(t), g'(t), h'(t) \gt
              =f(t)i+g(t)j+h(t)k=f'(t) \vec{i} + g'(t)\vec{j} + h'(t)\vec{k}


              Integrals with Vector Functions

              Indefinite integrals of vector functions are done in this way:

              r(t)dt=<f(t)dt,g(t)dt,h(t)dt>+C \int r(t)dt = \lt \int f(t)dt, \int g(t)dt, \int h(t)dt \gt + C
              =f(t)dti+g(t)dtj+h(t)dtk+C = \int f(t) dt \vec{i} + \int g(t)dt\vec{j} + \int h(t)dt\vec{k} + C

              Definite integrals of vector functions work like this:

              abr(t)dt=<abf(t)dt,abg(t)dt,abh(t)dt>+C \int^b_a r(t)dt = \lt \int^b_a f(t)dt, \int^b_a g(t)dt, \int^b_a h(t)dt \gt + C
              =abf(t)dti+abg(t)dtj+abh(t)dtk+C = \int^b_a f(t) dt \vec{i} + \int^b_a g(t)dt\vec{j} + \int^b_a h(t)dt\vec{k} + C