Remainder theorem

All in One Place

Everything you need for better grades in university, high school and elementary.

Learn with Ease

Made in Canada with help for all provincial curriculums, so you can study in confidence.

Instant and Unlimited Help

Get the best tips, walkthroughs, and practice questions.

  1. Understanding the remainder Theorem
    Prove the Remainder Theorem
    Remainder theorem
    1. Finding the Remainder Using Synthetic Division and the Remainder Theorem
      Find the remainder when (4x37x+10)\left( {4{x^3} - 7x + 10} \right) is divided by (2x5)\left( {2x - 5} \right)
      1. Using synthetic division
      2. Using the remainder theorem
    2. When (8x3+ax2+bx1)\left( {8{x^3} + a{x^2} + bx - 1} \right) is divided by:
      i) (2x5)\left( {2x - 5} \right), the remainder is 5454
      ii) (x+1)\left( {x + 1} \right), the remainder is 30 - 30
      Find the values of aa and bb.
      Topic Notes
      You may want to refresh your memory on polynomial long division and synthetic division to better understand this lesson. The remainder theorem simply states that if a polynomial f(x) is divided by a linear expression x-r, the value of f(r) is equal to the remainder.
      \cdot When a polynomial, P(x)P(x), is divided by (xa)(x-a): Remainder =P(a)=P(a)
      \cdot When a polynomial, P(x)P(x), is divided by (axb)(ax-b): Remainder =P(ba)=P(\frac{b}{a})