Evaluating logarithms using logarithm rules

All in One Place

Everything you need for better grades in university, high school and elementary.

Learn with Ease

Made in Canada with help for all provincial curriculums, so you can study in confidence.

Instant and Unlimited Help

0/1
Intros
Lessons
1. A Summary of Logarithm Rules
0/11
Examples
Lessons
1. Which of the following correctly states the
"product law"?
i)
$\log_2 8 + \log_2 4 = \log_2 12$
ii)
$\log_2 8 + \log_2 4 = \log_2 32$
iii)
$\log_2 8 \cdot \log_2 4 = \log_2 32$
2. Which of the following correctly states the
"quotient law"?
i)
$\log_b 15 - \log_b 3 = \log_b 5$
ii)
$\log_b 15 - \log_b 3 = \log_b 12$
iii)
${{\log_b \sqrt{8}} \over {\log_b \sqrt{32}}} = \log_b(\sqrt{1 \over 4})$
3. Which of the following correctly states the
"power law"?
i)
$(\log 100)^3 = \log 100^3$
ii)
$(\log 100)^3 = 3\log 100$
iii)
$\log 100^3 = 3\log 100$
2. Evaluate and state the laws involved in each step of
the calculation:
${5 ^{log_2{^3}\sqrt{80}} \over 5 ^{log_2{^3}\sqrt{20}}}$
1. Express as a single logarithm:

${\log A-3\log B-\log C}$
1. Evaluate logarithms:
1. Determine the value of ${\log_n ab^2, }$
if ${\log_na=5}$ and ${\log_nb=3}$
2. Given: $\log_5x = y$
express$\log_5125{x^4}$
1. $\log_3 \sqrt{15}- {1\over2} \log_35$
2. $\frac{({a^{\log_a8})}({a^{\log_a3}})}{a^{\log_a6}}$
1. If ${\log_3x^2 = 2}$ and ${2\log_b\sqrt{x} = {1\over3},}$
then the value of $b$ is ____________________ .
2. If ${\log_5x^2 = 4}$ and ${\log_2y^3 = 6 ,}$ and ${\log_bx+\log_by = {1\over2}}$ where x, y > 0,