Evaluating logarithms using logarithm rules

All in One Place

Everything you need for better grades in university, high school and elementary.

Learn with Ease

Made in Canada with help for all provincial curriculums, so you can study in confidence.

Instant and Unlimited Help

Get the best tips, walkthroughs, and practice questions.

0/1
?
Intros
Lessons
  1. A Summary of Logarithm Rules
0/11
?
Examples
Lessons
  1. Select the correct answer:
    1. Which of the following correctly states the
      "product law"?
      i)
      logโก28+logโก24=logโก212 \log_2 8 + \log_2 4 = \log_2 12
      ii)
      logโก28+logโก24=logโก232\log_2 8 + \log_2 4 = \log_2 32
      iii)
      logโก28โ‹…logโก24=logโก232\log_2 8 \cdot \log_2 4 = \log_2 32
    2. Which of the following correctly states the
      "quotient law"?
      i)
      logโกb15โˆ’logโกb3=logโกb5\log_b 15 - \log_b 3 = \log_b 5
      ii)
      logโกb15โˆ’logโกb3=logโกb12\log_b 15 - \log_b 3 = \log_b 12
      iii)
      logโกb8logโกb32=logโกb(14){{\log_b \sqrt{8}} \over {\log_b \sqrt{32}}} = \log_b(\sqrt{1 \over 4})
    3. Which of the following correctly states the
      "power law"?
      i)
      (logโก100)3=logโก1003(\log 100)^3 = \log 100^3
      ii)
      (logโก100)3=3logโก100(\log 100)^3 = 3\log 100
      iii)
      logโก1003=3logโก100\log 100^3 = 3\log 100
  2. Evaluate and state the laws involved in each step of
    the calculation:
    5log23805log2320{5 ^{log_2{^3}\sqrt{80}} \over 5 ^{log_2{^3}\sqrt{20}}}
    1. Express as a single logarithm:

      logโกAโˆ’3logโกBโˆ’logโกC{\log A-3\log B-\log C}
      1. Evaluate logarithms:
        1. Determine the value of logโกnab2, {\log_n ab^2, }
          if logโกna=5{\log_na=5} and logโกnb=3{\log_nb=3}
        2. Given: logโก5x=y \log_5x = y
          ask:
          expresslogโก5125x4 \log_5125{x^4}
      2. Evaluate.
        1. logโก315โˆ’12logโก35 \log_3 \sqrt{15}- {1\over2} \log_35
        2. (alogโกa8)(alogโกa3)alogโกa6\frac{({a^{\log_a8})}({a^{\log_a3}})}{a^{\log_a6}}
        1. If logโก3x2=2{\log_3x^2 = 2} and 2logโกbx=13,{2\log_b\sqrt{x} = {1\over3},}
          then the value of bb is ____________________ .
        2. If logโก5x2=4{\log_5x^2 = 4} and logโก2y3=6,{\log_2y^3 = 6 ,} and logโกbx+logโกby=12{\log_bx+\log_by = {1\over2}} where x, y > 0,
          then the value of b is ____________________ .
      Topic Notes
      ?