Evaluating logarithms using change-of-base formula

You’re one step closer to a better grade.

Learn with less effort by getting unlimited access, progress tracking and more.

Learn More



  1. How to apply `` change-of-base rule""

    Express log53 \log_53 in three different ways.
    1. Using a calculator, evaluate the following logarithms
      by applying `` change-of-base rule":":
      1. log53\log_53
      2. log7416\log_7\sqrt{416}
      3. log2725\log_2\frac{7}{25}
      4. 6log4999 \log_4999
    2. Using a calculator, solve for x x to the nearest hundredth.
      1. log6x=log78\log_6x = log_7 8
      2. log235=logx0.104\log_{23}5 = log_x\sqrt{0.104}

    Become a Member to Get More!

    • Easily See Your Progress

      We track the progress you've made on a topic so you know what you've done. From the course view you can easily see what topics have what and the progress you've made on them. Fill the rings to completely master that section or mouse over the icon to see more details.

    • Make Use of Our Learning Aids

      Last Viewed
      Practice Accuracy
      Suggested Tasks

      Get quick access to the topic you're currently learning.

      See how well your practice sessions are going over time.

      Stay on track with our daily recommendations.

    • Earn Achievements as You Learn

      Make the most of your time as you use StudyPug to help you achieve your goals. Earn fun little badges the more you watch, practice, and use our service.

    • Create and Customize Your Avatar

      Play with our fun little avatar builder to create and customize your own avatar on StudyPug. Choose your face, eye colour, hair colour and style, and background. Unlock more options the more you use StudyPug.

    Topic Basics
    • change-of-base rule:
    logba=logxalogxb=logalogb \log_ba = \frac{\log_xa}{\log_xb} = \frac{\log a}{\log b}

    • common logarithms:
    log with base 10" ``10"
    example: log3=log103 \log3 = \log_{10}3
    example: logx=log10x \log x = \log_{10}x