Still Confused?

Try reviewing these fundamentals first.

- Home
- AU Maths Methods
- Applications of Exponential Functions

Still Confused?

Try reviewing these fundamentals first.

Still Confused?

Try reviewing these fundamentals first.

Nope, I got it.

That's that last lesson.

Start now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started NowStart now and get better math marks!

Get Started Now- Lesson: 1a4:34
- Lesson: 1b3:06
- Lesson: 1c3:50
- Lesson: 1d3:23
- Lesson: 1e3:21
- Lesson: 26:41

Now that we understand the concepts behind exponential growth and decay, let's utilize them and solve real-life problems! One of the many areas where exponential growth comes in handy is Finance. In this section, we will learn how compound interest helps us grow our deposits in our investment and/or bank accounts.

Related concepts: Derivative of inverse trigonometric functions, Derivative of logarithmic functions,

exponential growth/decay: ${ A_f = A_i (1+\frac{r}{n})^{nt}}$

${A_f}$: final amount

${A_i}$: initial amount

${r}$ : Annual interest rate

${t}$: total time given in**years **

${n}$ : number of times compounded in a year, if

${A_f}$: final amount

${A_i}$: initial amount

${r}$ : Annual interest rate

${t}$: total time given in

${n}$ : number of times compounded in a year, if

Compound daily: |
n = 365 |

Compound monthly: |
n = 12 |

Compound quarterly: |
n = 4 |

Compound semi-annually: |
n = 2 |

Compound annually: |
n = 1 |

- 1.Bianca deposits $1,000 in a savings account with an annual interest rate of

12%. How much money will she have in 20 years, if the interest is compounded:a)dailyb)monthlyc)quarterlyd)semi-annuallye)annually - 2.A $1000 investment, compounded quarterly, doubles in value over a period

of 8 years. Find the interest rate per annum.

We have over 1270 practice questions in AU Maths Methods for you to master.

Get Started Now