0/1
?
Intros
Lessons
  1. Integral Test Overview
0/5
?
Examples
Lessons
  1. P Series versus Integral test
    Use the integral test instead of the p-series test to show that the series converge or diverge.
    1. n=13n2\sum_{n=1}^{\infty}\frac{3}{n^2}
    2. n=11n\sum_{n=1}^{\infty}\frac{1}{n}
  2. Convergence/Divergence of Integral Test
    Determine whether the following series converge or diverge using the integral test.
    1. n=32(5n+4)5\sum_{n=3}^{\infty}\frac{2}{(5n+4)^5}
    2. n=11n2+7n+12\sum_{n=1}^{\infty}\frac{1}{n^2+7n+12}
  3. Advanced Question Regarding to the Integral Test
    Determine if the series k=21k  3ln(4k)\sum_{k=2}^{\infty}\frac{1}{k\ \ {^3}\sqrt{ln(4k)}} converges or diverges.