Simplifying complex fractions

Everything You Need in One Place

Homework problems? Exam preparation? Trying to grasp a concept or just brushing up the basics? Our extensive help & practice library have got you covered.

Learn and Practice With Ease

Our proven video lessons ease you through problems quickly, and you get tonnes of friendly practice on questions that trip students up on tests and finals.

Instant and Unlimited Help

Our personalized learning platform enables you to instantly find the exact walkthrough to your specific type of question. Activate unlimited help now!

Get the most by viewing this topic in your current grade. Pick your course now.

  1. Introduction to Simplifying Complex Fractions
  2. Type 1: single  fractionsingle  fraction\frac{single\;fraction}{single\;fraction}
  3. Type 2: multiple  fractionmultiple  fraction\frac{multiple\;fraction}{multiple\;fraction}
  4. Type 2 Special Case: Fractions Involving Negative Exponents
  1. Type 1: single  fractionsingle  fraction\frac{single\;fraction}{single\;fraction}
    i) 2389\frac{\frac{2}{3}}{\frac{8}{9}}
    ii) 12x5y33x22xy7y2\frac{\frac{12x^5y^3}{3x^2}}{\frac{2xy^7}{y^2}}
    iii) 5x105x2x\frac{\frac{5x-10}{5}}{\frac{x-2}{x}}
    1. Type 2: multiple  fractionmultiple  fraction\frac{multiple\;fraction}{multiple\;fraction}
      i) x2y31yy2x31x\frac{\frac{x^2}{y^3}-\frac{1}{y}}{\frac{y^2}{x^3}-\frac{1}{x}}
      ii) 14z+4z21z22z3\frac{1-\frac{4}{z}+\frac{4}{z^2}}{\frac{1}{z^2}-\frac{2}{z^3}}
      1. Fractions Involving Negative Exponents
        i) x13x23x19x2\frac{x^{-1}-3x^{-2}}{3x^{-1}-9x^{-2}}
        ii) (x2y2)1(x^{-2}-y^{-2})^{-1}
        Topic Notes
        Steps to solving complex fractions:
        1. Write the main numerator and denominator as single fractions.
        2. Set up a division statement.
        3. Simplify the expression.